Files
agdaproofs/Rings/Ideals/Prime/Lemmas.agda
2019-12-07 13:00:18 +00:00

67 lines
3.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Sets.EquivalenceRelations
open import Rings.Ideals.Definition
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Lemmas
open import Rings.Ideals.Prime.Definition
open import Rings.Cosets
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Ideals.Prime.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} {c : _} {pred : A Set c} (i : Ideal R pred) where
open Ring R
open Group additiveGroup
open Setoid S
open Equivalence eq
open import Rings.Ideals.Lemmas R
idealPrimeImpliesQuotientIntDom : PrimeIdeal i IntegralDomain (cosetRing R i)
IntegralDomain.intDom (idealPrimeImpliesQuotientIntDom isPrime) {a} {b} ab=0 a!=0 = ans
where
ab=0' : pred (a * b)
ab=0' = translate' i ab=0
a!=0' : (pred a) False
a!=0' prA = a!=0 (translate i prA)
ans' : pred b
ans' = PrimeIdeal.isPrime isPrime ab=0' a!=0'
ans : pred (inverse (Ring.0R (cosetRing R i)) + b)
ans = translate i ans'
IntegralDomain.nontrivial (idealPrimeImpliesQuotientIntDom isPrime) 1=0 = PrimeIdeal.notContainedIsNotContained isPrime u
where
t : pred (Ring.1R (cosetRing R i))
t = translate' i 1=0
u : pred (PrimeIdeal.notContained isPrime)
u = Ideal.isSubset i identIsIdent (Ideal.accumulatesTimes i {y = PrimeIdeal.notContained isPrime} t)
quotientIntDomImpliesIdealPrime : IntegralDomain (cosetRing R i) PrimeIdeal i
quotientIntDomImpliesIdealPrime intDom = record { isPrime = isPrime ; notContained = Ring.1R R ; notContainedIsNotContained = notCon }
where
abstract
notCon : pred 1R False
notCon 1=0 = IntegralDomain.nontrivial intDom (translate i 1=0)
isPrime : {a b : A} pred (a * b) (pred a False) pred b
isPrime {a} {b} predAB !predA = translate' i (IntegralDomain.intDom intDom (translate i predAB) λ t !predA (translate' i t))
private
dividesZero : {a : A} generatedIdealPred R 0R a a 0R
dividesZero (c , pr) = symmetric (transitive (symmetric (transitive *Commutative timesZero)) pr)
zeroIdealPrimeImpliesIntDom : PrimeIdeal (generatedIdeal R 0R) IntegralDomain R
IntegralDomain.intDom (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) {a} {b} ab=0 a!=0 with isPrime {a} {b} (1R , transitive (transitive *Commutative timesZero) (symmetric ab=0)) λ 0|a a!=0 (dividesZero 0|a)
... | c , 0c=b = transitive (symmetric 0c=b) (transitive *Commutative timesZero)
IntegralDomain.nontrivial (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) 1=0 = notContainedIsNotContained (notContained , transitive (*WellDefined (symmetric 1=0) reflexive) identIsIdent)
intDomImpliesZeroIdealPrime : IntegralDomain R PrimeIdeal (generatedIdeal R 0R)
PrimeIdeal.isPrime (intDomImpliesZeroIdealPrime intDom) (c , 0=ab) 0not|a with IntegralDomain.intDom intDom (transitive (symmetric 0=ab) (transitive *Commutative timesZero)) λ a=0 0not|a (0R , transitive timesZero (symmetric a=0))
... | b=0 = 0R , transitive timesZero (symmetric b=0)
PrimeIdeal.notContained (intDomImpliesZeroIdealPrime intDom) = 1R
PrimeIdeal.notContainedIsNotContained (intDomImpliesZeroIdealPrime intDom) (c , 0c=1) = IntegralDomain.nontrivial intDom (symmetric (transitive (symmetric (transitive *Commutative timesZero)) 0c=1))