Files
agdaproofs/Rings/PrincipalIdealDomains/Definition.agda
2020-01-05 15:06:35 +00:00

16 lines
635 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.PrincipalIdealDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Ideals.Principal.Definition R
open import Rings.Ideals.Definition R
PrincipalIdealDomain : {c : _} Set (a b lsuc c)
PrincipalIdealDomain {c} = {pred : A Set c} (ideal : Ideal pred) PrincipalIdeal ideal