mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-06 12:28:39 +00:00
64 lines
5.5 KiB
Agda
64 lines
5.5 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
open import Setoids.Setoids
|
||
open import Rings.Definition
|
||
open import Rings.Lemmas
|
||
open import Rings.Orders.Partial.Definition
|
||
open import Rings.Orders.Total.Definition
|
||
open import Groups.Definition
|
||
open import Groups.Lemmas
|
||
open import Groups.Groups
|
||
open import Fields.Fields
|
||
open import Sets.EquivalenceRelations
|
||
open import Sequences
|
||
open import Setoids.Orders
|
||
open import Functions
|
||
open import LogicalFormulae
|
||
open import Numbers.Naturals.Naturals
|
||
|
||
module Fields.CauchyCompletion.Addition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where
|
||
|
||
open Setoid S
|
||
open SetoidTotalOrder (TotallyOrderedRing.total order)
|
||
open SetoidPartialOrder pOrder
|
||
open Equivalence eq
|
||
open PartiallyOrderedRing pRing
|
||
open Ring R
|
||
open Group additiveGroup
|
||
open Field F
|
||
|
||
open import Fields.Lemmas F
|
||
open import Fields.CauchyCompletion.Definition order F
|
||
open import Rings.Orders.Partial.Lemmas pRing
|
||
open import Rings.Orders.Total.Lemmas order
|
||
|
||
lemm : (m : ℕ) (a b : Sequence A) → index (apply _+_ a b) m ≡ (index a m) + (index b m)
|
||
lemm zero a b = refl
|
||
lemm (succ m) a b = lemm m (Sequence.tail a) (Sequence.tail b)
|
||
|
||
_+C_ : CauchyCompletion → CauchyCompletion → CauchyCompletion
|
||
CauchyCompletion.elts (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) = apply _+_ a b
|
||
CauchyCompletion.converges (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) ε 0<e with halve charNot2 ε
|
||
... | e/2 , e/2Pr with convA e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq e/2Pr) 0<e))
|
||
CauchyCompletion.converges (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) ε 0<e | e/2 , e/2Pr | Na , prA with convB e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq e/2Pr) 0<e))
|
||
CauchyCompletion.converges (record { elts = a ; converges = convA } +C record { elts = b ; converges = convB }) ε 0<e | e/2 , e/2Pr | Na , prA | Nb , prB = (Na +N Nb) , t
|
||
where
|
||
t : {m n : ℕ} → Na +N Nb <N m → Na +N Nb <N n → abs ((index (apply _+_ a b) m) + inverse (index (apply _+_ a b) n)) < ε
|
||
t {m} {n} <m <n with prA {m} {n} (inequalityShrinkLeft <m) (inequalityShrinkLeft <n)
|
||
... | am-an<e/2 with prB {m} {n} (inequalityShrinkRight <m) (inequalityShrinkRight <n)
|
||
... | bm-bn<e/2 with triangleInequality (index a m + inverse (index a n)) (index b m + inverse (index b n))
|
||
... | inl tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (SetoidPartialOrder.<Transitive pOrder {_} {(abs ((index a m) + (inverse (index a n)))) + (abs ((index b m) + (inverse (index b n))))} (<WellDefined (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m})))) (Equivalence.reflexive eq) tri) (ringAddInequalities am-an<e/2 bm-bn<e/2))
|
||
... | inr tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq tri) (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m}))))) (Equivalence.reflexive eq) (ringAddInequalities am-an<e/2 bm-bn<e/2))
|
||
|
||
inverseDistributes : {r s : A} → inverse (r + s) ∼ inverse r + inverse s
|
||
inverseDistributes = Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian
|
||
|
||
-C_ : CauchyCompletion → CauchyCompletion
|
||
CauchyCompletion.elts (-C a) = map inverse (CauchyCompletion.elts a)
|
||
CauchyCompletion.converges (-C record { elts = elts ; converges = converges }) ε 0<e with converges ε 0<e
|
||
CauchyCompletion.converges (-C record { elts = elts ; converges = converges }) ε 0<e | N , prN = N , ans
|
||
where
|
||
ans : {m n : ℕ} → (N <N m) → (N <N n) → abs ((index (map inverse elts) m) + inverse (index (map inverse elts) n)) < ε
|
||
ans {m} {n} N<m N<n = <WellDefined (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.reflexive eq)) (Equivalence.transitive eq (absNegation (index elts m + inverse (index elts n))) (absWellDefined _ _ (Equivalence.transitive eq inverseDistributes (+WellDefined (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex elts inverse m))) (inverseWellDefined additiveGroup (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex elts inverse n))))))))) (Equivalence.reflexive eq) (prN N<m N<n)
|