Files
agdaproofs/Setoids/Lists.agda
2020-01-05 15:06:35 +00:00

60 lines
4.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
module Setoids.Lists where
listEquality : {a b : _} {A : Set a} (S : Setoid {a} {b} A) Rel {a} {b} (List A)
listEquality S [] [] = True'
listEquality S [] (x :: w2) = False'
listEquality S (x :: w1) [] = False'
listEquality S (x :: w1) (y :: w2) = (Setoid.__ S x y) && listEquality S w1 w2
listEqualityReflexive : {a b : _} {A : Set a} (S : Setoid {a} {b} A) (w : List A) listEquality S w w
listEqualityReflexive S [] = record {}
listEqualityReflexive S (x :: w) = Equivalence.reflexive (Setoid.eq S) ,, listEqualityReflexive S w
listEqualitySymmetric : {a b : _} {A : Set a} (S : Setoid {a} {b} A) {w1 w2 : List A} listEquality S w1 w2 listEquality S w2 w1
listEqualitySymmetric S {w1 = []} {[]} pr = record {}
listEqualitySymmetric S {[]} {x :: xs} ()
listEqualitySymmetric S {x :: xs} {[]} ()
listEqualitySymmetric S {w1 = x :: w1} {y :: w2} (pr1 ,, pr2) = Equivalence.symmetric (Setoid.eq S) pr1 ,, listEqualitySymmetric S pr2
listEqualityTransitive : {a b : _} {A : Set a} (S : Setoid {a} {b} A) {w1 w2 w3 : List A} listEquality S w1 w2 listEquality S w2 w3 listEquality S w1 w3
listEqualityTransitive S {w1 = []} {[]} {[]} w1=w2 w2=w3 = record {}
listEqualityTransitive S {w1 = []} {[]} {x :: xs} w1=w2 ()
listEqualityTransitive S {w1 = []} {x :: xs} {w3} () w2=w3
listEqualityTransitive S {w1 = x :: w1} {[]} {w3} () w2=w3
listEqualityTransitive S {w1 = x :: w1} {y :: ys} {[]} w1=w2 ()
listEqualityTransitive S {w1 = x :: w1} {y :: w2} {z :: w3} (pr1 ,, pr2) (pr3 ,, pr4) = Equivalence.transitive (Setoid.eq S) pr1 pr3 ,, listEqualityTransitive S pr2 pr4
listEqualityRespectsMap : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A B) (fWD : {x y : A} Setoid.__ S x y Setoid.__ T (f x) (f y)) {w1 w2 : List A} (w1=w2 : listEquality S w1 w2) listEquality T (map f w1) (map f w2)
listEqualityRespectsMap S T f fWD {[]} {[]} w1=w2 = record {}
listEqualityRespectsMap S T f fWD {[]} {x :: w2} ()
listEqualityRespectsMap S T f fWD {x :: w1} {[]} ()
listEqualityRespectsMap S T f fWD {x :: w1} {y :: w2} (x=y ,, w1=w2) = fWD x=y ,, listEqualityRespectsMap S T f fWD {w1} {w2} w1=w2
listSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) Setoid (List A)
Setoid.__ (listSetoid S) word1 word2 = listEquality S word1 word2
Equivalence.reflexive (Setoid.eq (listSetoid S)) {word} = listEqualityReflexive S word
Equivalence.symmetric (Setoid.eq (listSetoid S)) pr = listEqualitySymmetric S pr
Equivalence.transitive (Setoid.eq (listSetoid S)) pr1 pr2 = listEqualityTransitive S pr1 pr2
consWellDefined : {a b : _} {A : Set a} {S : Setoid {a} {b} A} (xs : List A) {x y : A} (x=y : Setoid.__ S x y) Setoid.__ (listSetoid S) (x :: xs) (y :: xs)
consWellDefined {S = S} xs x=y = x=y ,, Equivalence.reflexive (Setoid.eq (listSetoid S))
appendWellDefined : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {xs ys as bs : List A} (xs=as : Setoid.__ (listSetoid S) xs as) (ys=bs : Setoid.__ (listSetoid S) ys bs) Setoid.__ (listSetoid S) (xs ++ ys) (as ++ bs)
appendWellDefined {S = S} {[]} {[]} {[]} {[]} record {} record {} = record {}
appendWellDefined {S = S} {[]} {[]} {[]} {x :: bs} record {} ()
appendWellDefined {S = S} {[]} {x :: ys} {[]} {[]} record {} ys=bs = ys=bs
appendWellDefined {S = S} {[]} {x :: ys} {[]} {x₁ :: bs} record {} ys=bs = ys=bs
appendWellDefined {S = S} {[]} {ys} {x :: as} {bs} () ys=bs
appendWellDefined {S = S} {x :: xs} {ys} {[]} {bs} () ys=bs
appendWellDefined {S = S} {x :: xs} {[]} {x₁ :: as} {[]} xs=as record {} = _&&_.fst xs=as ,, identityOfIndiscernablesRight (listEquality S) (identityOfIndiscernablesLeft (listEquality S) (_&&_.snd xs=as) (equalityCommutative (appendEmptyList xs))) (equalityCommutative (appendEmptyList as))
appendWellDefined {S = S} {x :: xs} {[]} {x₁ :: as} {x₂ :: bs} xs=as ()
appendWellDefined {S = S} {x :: xs} {x₂ :: ys} {x₁ :: as} {[]} xs=as ()
appendWellDefined {S = S} {x :: xs} {x₂ :: ys} {x₁ :: as} {x₃ :: bs} (fst ,, snd) ys=bs = fst ,, appendWellDefined snd ys=bs