mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-12 15:18:40 +00:00
32 lines
2.5 KiB
Agda
32 lines
2.5 KiB
Agda
{-# OPTIONS --warning=error --safe --without-K #-}
|
|
|
|
open import Functions
|
|
open import Rings.Homomorphisms.Definition
|
|
open import Groups.Homomorphisms.Definition
|
|
open import Setoids.Setoids
|
|
open import Rings.Definition
|
|
open import Sets.EquivalenceRelations
|
|
open import Groups.QuotientGroup.Definition
|
|
|
|
module Rings.Quotients.Definition {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ _*A_ : A → A → A} {_+B_ _*B_ : B → B → B} (R : Ring S _+A_ _*A_) (R2 : Ring T _+B_ _*B_) {underf : A → B} (f : RingHom R R2 underf) where
|
|
|
|
open import Groups.QuotientGroup.Lemmas (Ring.additiveGroup R) (Ring.additiveGroup R2) (RingHom.groupHom f)
|
|
|
|
quotientByRingHom : Ring (quotientGroupSetoid (Ring.additiveGroup R) (RingHom.groupHom f)) _+A_ _*A_
|
|
Ring.additiveGroup quotientByRingHom = quotientGroupByHom (Ring.additiveGroup R) (RingHom.groupHom f)
|
|
Ring.*WellDefined quotientByRingHom fr=ft fs=fu = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (transitive (RingHom.ringHom f) (transitive (Ring.*WellDefined R2 (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fr=ft) (quotientGroupLemma' (Ring.additiveGroup R) (RingHom.groupHom f) fs=fu)) (symmetric (RingHom.ringHom f))))
|
|
where
|
|
open Setoid T
|
|
open Equivalence eq
|
|
Ring.1R quotientByRingHom = Ring.1R R
|
|
Ring.groupIsAbelian quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.groupIsAbelian R))
|
|
Ring.*Associative quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Associative R))
|
|
Ring.*Commutative quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*Commutative R))
|
|
Ring.*DistributesOver+ quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.*DistributesOver+ R))
|
|
Ring.identIsIdent quotientByRingHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (GroupHom.wellDefined (RingHom.groupHom f) (Ring.identIsIdent R))
|
|
|
|
projectionMapIsHom : RingHom R quotientByRingHom id
|
|
RingHom.preserves1 projectionMapIsHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (Equivalence.reflexive (Setoid.eq T))
|
|
RingHom.ringHom projectionMapIsHom = quotientGroupLemma (Ring.additiveGroup R) (RingHom.groupHom f) (Equivalence.reflexive (Setoid.eq T))
|
|
RingHom.groupHom projectionMapIsHom = projectionMapIsGroupHom
|