Files
agdaproofs/Numbers/Naturals/Exponentiation.agda
2019-10-03 06:53:13 +01:00

23 lines
1.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Addition
open import Numbers.Naturals.Multiplication
open import Numbers.Naturals.Order
module Numbers.Naturals.Exponentiation where
_^N_ :
a ^N zero = 1
a ^N succ b = a *N (a ^N b)
exponentiationIncreases : (a b : ) (a 0) || (a ≤N a ^N (succ b))
exponentiationIncreases zero b = inl refl
exponentiationIncreases (succ a) zero = inr (inr (applyEquality succ (transitivity (additionNIsCommutative 0 a) (multiplicationNIsCommutative 1 a))))
exponentiationIncreases (succ a) (succ b) with exponentiationIncreases (succ a) b
exponentiationIncreases (succ a) (succ b) | inr (inl x) = inr (inl (canAddToOneSideOfInequality _ x))
exponentiationIncreases (succ a) (succ b) | inr (inr x) with productOne x
exponentiationIncreases (succ 0) (succ b) | inr (inr x) | inr pr rewrite pr = inr (inr refl)
exponentiationIncreases (succ (succ a)) (succ b) | inr (inr x) | inr pr rewrite pr | productWithOneRight a = inr (inl (le (succ (a +N a *N succ (succ a))) (additionNIsCommutative _ (succ (succ a)))))