Files
agdaproofs/Groups/QuotientGroup/Lemmas.agda
2020-01-05 15:06:35 +00:00

32 lines
2.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import Functions
open import Groups.Definition
open import Groups.Homomorphisms.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Groups.Lemmas
open import Groups.QuotientGroup.Definition
open import Groups.Homomorphisms.Lemmas
module Groups.QuotientGroup.Lemmas {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} (G : Group S _+A_) (H : Group T _+B_) {f : A B} (fHom : GroupHom G H f) where
quotientGroupLemma : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {underf : A B} (f : GroupHom G H underf) {x y : A} Setoid.__ T (underf x) (underf y) Setoid.__ (quotientGroupSetoid G f) x y
quotientGroupLemma {S = S} {T = T} G {H = H} fHom {x} {y} fx=fy = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H (Equivalence.reflexive (Setoid.eq T)) (homRespectsInverse fHom)) (transferToRight'' H fx=fy))
where
open Group G
open Setoid T
open Equivalence eq
quotientGroupLemma' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {underf : A B} (f : GroupHom G H underf) {x y : A} Setoid.__ (quotientGroupSetoid G f) x y Setoid.__ T (underf x) (underf y)
quotientGroupLemma' {S = S} {T = T} G {H = H} f fx=fy = transferToRight H (transitive (transitive (Group.+WellDefined H (Equivalence.reflexive (Setoid.eq T)) (symmetric (homRespectsInverse f))) (symmetric (GroupHom.groupHom f))) fx=fy)
where
open Group G
open Setoid T
open Equivalence eq
projectionMapIsGroupHom : GroupHom G (quotientGroupByHom G fHom) id
GroupHom.groupHom projectionMapIsGroupHom {x} {y} = quotientGroupLemma G fHom (Equivalence.reflexive (Setoid.eq T))
GroupHom.wellDefined projectionMapIsGroupHom x=y = quotientGroupLemma G fHom (GroupHom.wellDefined fHom x=y)