Files
agdaproofs/Groups/Polynomials/Addition.agda
2020-01-05 15:06:35 +00:00

107 lines
7.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Abelian.Definition
open import Groups.Definition
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Lists.Lists
module Groups.Polynomials.Addition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) where
open import Groups.Polynomials.Definition G
open Setoid S
open Equivalence eq
open Group G
_+P_ : NaivePoly NaivePoly NaivePoly
_+P_ = listZip _+_ id id
inverse' : NaivePoly NaivePoly
inverse' = map (Group.inverse G)
abstract
PidentRight : {m : NaivePoly} polysEqual (m +P []) m
PidentRight {[]} = record {}
PidentRight {x :: m} = reflexive ,, identityOfIndiscernablesLeft polysEqual (Equivalence.reflexive (Setoid.eq naivePolySetoid)) (equalityCommutative (mapId m))
+PwellDefined : {m n x y : NaivePoly} polysEqual m x polysEqual n y polysEqual (m +P n) (x +P y)
+PwellDefined {[]} {[]} {[]} {[]} m=x n=y = record {}
+PwellDefined {[]} {[]} {[]} {x :: y} m=x (fst ,, snd) = fst ,, identityOfIndiscernablesRight polysEqual snd (equalityCommutative (mapId y))
+PwellDefined {[]} {[]} {x :: xs} {[]} (fst ,, snd) n=y = fst ,, identityOfIndiscernablesRight polysEqual snd (equalityCommutative (mapId xs))
+PwellDefined {[]} {[]} {x :: xs} {y :: ys} (fst ,, snd) (fst2 ,, snd2) = transitive (+WellDefined fst fst2) identRight ,, +PwellDefined {[]} {[]} {xs} {ys} snd snd2
+PwellDefined {[]} {n :: ns} {[]} {[]} m=x (fst ,, snd) = fst ,, identityOfIndiscernablesLeft polysEqual snd (equalityCommutative (mapId ns))
+PwellDefined {[]} {n :: ns} {[]} {y :: ys} m=x (fst ,, snd) = fst ,, +PwellDefined m=x snd
+PwellDefined {[]} {n :: ns} {x :: xs} {[]} (fst ,, snd) (fst2 ,, snd2) = transitive fst2 (symmetric fst) ,, ans
where
ans : polysEqual (map (λ z z) ns) (map (λ z z) xs)
ans rewrite mapId ns | mapId xs = Equivalence.transitive (Setoid.eq naivePolySetoid) snd2 snd
+PwellDefined {[]} {n :: ns} {x :: xs} {y :: ys} (fst ,, snd) (fst2 ,, snd2) = transitive (symmetric identLeft) (+WellDefined (symmetric fst) fst2) ,, (+PwellDefined snd snd2)
+PwellDefined {m :: ms} {[]} {[]} {[]} (fst ,, snd) _ = fst ,, identityOfIndiscernablesLeft polysEqual snd (equalityCommutative (mapId ms))
+PwellDefined {m :: ms} {[]} {[]} {x :: ys} (fst ,, snd) (fst2 ,, snd2) = transitive fst (symmetric fst2) ,, ans
where
ans : polysEqual (map (λ z z) ms) (map (λ z z) ys)
ans rewrite mapId ms | mapId ys = Equivalence.transitive (Setoid.eq naivePolySetoid) snd snd2
+PwellDefined {m :: ms} {[]} {x :: xs} {[]} (fst ,, snd) n=y = fst ,, ans
where
ans : polysEqual (map (λ z z) ms) (map (λ z z) xs)
ans rewrite mapId ms | mapId xs = snd
+PwellDefined {m :: ms} {[]} {x :: xs} {y :: ys} (fst ,, snd) (fst2 ,, snd2) = transitive (symmetric identRight) (+WellDefined fst (symmetric fst2)) ,, identityOfIndiscernablesLeft polysEqual (Equivalence.transitive (Setoid.eq naivePolySetoid) (Equivalence.symmetric (Setoid.eq naivePolySetoid) PidentRight) (+PwellDefined snd snd2)) (equalityCommutative (mapId ms))
+PwellDefined {m :: ms} {n :: ns} {[]} {[]} (fst ,, snd) (fst2 ,, snd2) = transitive (+WellDefined fst fst2) identLeft ,, +PwellDefined snd snd2
+PwellDefined {m :: ms} {n :: ns} {[]} {y :: ys} (fst ,, snd) (fst2 ,, snd2) = transitive (+WellDefined fst fst2) identLeft ,, +PwellDefined snd snd2
+PwellDefined {m :: ms} {n :: ns} {x :: xs} {[]} (fst ,, snd) (fst2 ,, snd2) = transitive (+WellDefined fst fst2) identRight ,, identityOfIndiscernablesRight polysEqual (Equivalence.transitive (Setoid.eq naivePolySetoid) (+PwellDefined snd snd2) PidentRight) (equalityCommutative (mapId xs))
+PwellDefined {m :: ms} {n :: ns} {x :: xs} {y :: ys} (fst ,, snd) (fst2 ,, snd2) = +WellDefined fst fst2 ,, +PwellDefined snd snd2
PidentLeft : {m : NaivePoly} polysEqual ([] +P m) m
PidentLeft {[]} = record {}
PidentLeft {x :: m} = reflexive ,, identityOfIndiscernablesLeft polysEqual (Equivalence.reflexive (Setoid.eq naivePolySetoid)) (equalityCommutative (mapId m))
invLeft' : {a : NaivePoly} polysEqual ((inverse' a) +P a) []
invLeft' {[]} = record {}
invLeft' {x :: a} = Group.invLeft G ,, invLeft' {a}
invRight' : {a : NaivePoly} polysEqual (a +P (inverse' a)) []
invRight' {[]} = record {}
invRight' {x :: a} = Group.invRight G ,, invRight' {a}
assoc : {a b c : NaivePoly} polysEqual (a +P (b +P c)) ((a +P b) +P c)
assoc {[]} {[]} {[]} = record {}
assoc {[]} {[]} {x :: c} = reflexive ,, ans
where
ans : polysEqual (map (λ z z) (map (λ z z) c)) (map (λ z z) c)
ans rewrite mapId c | mapId c = Equivalence.reflexive (Setoid.eq naivePolySetoid)
assoc {[]} {b :: bs} {[]} = reflexive ,, ans
where
ans : polysEqual (map (λ z z) (map (λ z z) bs)) (map (λ z z) (map (λ z z) bs))
ans rewrite mapId bs | mapId bs = Equivalence.reflexive (Setoid.eq naivePolySetoid)
assoc {[]} {b :: bs} {c :: cs} = reflexive ,, ans
where
ans : polysEqual (map (λ z z) (listZip _+_ (λ z z) (λ z z) bs cs)) (listZip _+_ (λ z z) (λ z z) (map (λ z z) bs) cs)
ans rewrite mapId bs | mapId (listZip _+_ id id bs cs) = Equivalence.reflexive (Setoid.eq naivePolySetoid)
assoc {a :: as} {[]} {[]} = reflexive ,, ans
where
ans : polysEqual (map (λ z z) as) (map (λ z z) (map (λ z z) as))
ans rewrite mapId as | mapId as = Equivalence.reflexive (Setoid.eq naivePolySetoid)
assoc {a :: as} {[]} {c :: cs} = reflexive ,, ans
where
ans : polysEqual (listZip _+_ (λ z z) (λ z z) as (map (λ z z) cs)) (listZip _+_ (λ z z) (λ z z) (map (λ z z) as) cs)
ans rewrite mapId cs | mapId as = Equivalence.reflexive (Setoid.eq naivePolySetoid)
assoc {a :: as} {b :: bs} {[]} = reflexive ,, ans
where
ans : polysEqual (listZip _+_ (λ z z) (λ z z) as (map (λ z z) bs)) (map (λ z z) (listZip _+_ (λ z z) (λ z z) as bs))
ans rewrite mapId (listZip _+_ id id as bs) | mapId bs = Equivalence.reflexive (Setoid.eq naivePolySetoid)
assoc {a :: as} {b :: bs} {c :: cs} = Group.+Associative G ,, assoc {as} {bs} {cs}
comm : AbelianGroup G {x y : NaivePoly} polysEqual (x +P y) (y +P x)
comm com {[]} {y} = Equivalence.transitive (Setoid.eq naivePolySetoid) PidentLeft (Equivalence.symmetric (Setoid.eq naivePolySetoid) PidentRight)
comm com {x :: xs} {[]} = reflexive ,, Equivalence.reflexive (Setoid.eq naivePolySetoid)
comm com {x :: xs} {y :: ys} = AbelianGroup.commutative com ,, comm com {xs} {ys}
mapDist : (f : A A) (fDist : {x y : A} f (x + y) (f x) + (f y)) (xs ys : NaivePoly) polysEqual (map f (xs +P ys)) ((map f xs) +P (map f ys))
mapDist f fDist [] [] = record {}
mapDist f fDist [] (x :: ys) rewrite mapId ys | mapId (map f ys) = reflexive ,, Equivalence.reflexive (Setoid.eq naivePolySetoid)
mapDist f fDist (x :: xs) [] rewrite mapId xs | mapId (map f xs) = reflexive ,, Equivalence.reflexive (Setoid.eq naivePolySetoid)
mapDist f fDist (x :: xs) (y :: ys) = fDist {x} {y} ,, mapDist f fDist xs ys