Files
agdaproofs/Groups/DirectSum/Definition.agda
2020-01-05 15:06:35 +00:00

20 lines
1.1 KiB
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Groups.Definition
module Groups.DirectSum.Definition {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·A_ : A A A} {B : Set n} {T : Setoid {n} {p} B} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) where
open import Setoids.DirectSum S T
directSumGroup : Group directSumSetoid (λ x1 y1 (((_&&_.fst x1) ·A (_&&_.fst y1)) ,, ((_&&_.snd x1) ·B (_&&_.snd y1))))
Group.+WellDefined directSumGroup (s ,, t) (u ,, v) = Group.+WellDefined G s u ,, Group.+WellDefined H t v
Group.0G directSumGroup = (Group.0G G ,, Group.0G H)
Group.inverse directSumGroup (g1 ,, H1) = (Group.inverse G g1) ,, (Group.inverse H H1)
Group.+Associative directSumGroup = Group.+Associative G ,, Group.+Associative H
Group.identRight directSumGroup = Group.identRight G ,, Group.identRight H
Group.identLeft directSumGroup = Group.identLeft G ,, Group.identLeft H
Group.invLeft directSumGroup = Group.invLeft G ,, Group.invLeft H
Group.invRight directSumGroup = Group.invRight G ,, Group.invRight H