Files
agdaproofs/Groups/Cyclic/Definition.agda
2020-01-05 15:06:35 +00:00

49 lines
2.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Semiring
open import Numbers.Integers.Integers
open import Groups.Definition
open import Groups.Lemmas
module Groups.Cyclic.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) where
open Setoid S
open Group G
open Equivalence eq
positiveEltPower : (x : A) (i : ) A
positiveEltPower x 0 = Group.0G G
positiveEltPower x (succ i) = x · (positiveEltPower x i)
positiveEltPowerWellDefinedG : (x y : A) (x y) (i : ) (positiveEltPower x i) (positiveEltPower y i)
positiveEltPowerWellDefinedG x y x=y 0 = reflexive
positiveEltPowerWellDefinedG x y x=y (succ i) = +WellDefined x=y (positiveEltPowerWellDefinedG x y x=y i)
positiveEltPowerCollapse : (x : A) (i j : ) Setoid.__ S ((positiveEltPower x i) · (positiveEltPower x j)) (positiveEltPower x (i +N j))
positiveEltPowerCollapse x zero j = Group.identLeft G
positiveEltPowerCollapse x (succ i) j = transitive (symmetric +Associative) (+WellDefined reflexive (positiveEltPowerCollapse x i j))
elementPower : (x : A) (i : ) A
elementPower x (nonneg i) = positiveEltPower x i
elementPower x (negSucc i) = Group.inverse G (positiveEltPower x (succ i))
-- TODO: move this to lemmas
elementPowerWellDefinedZ : (i j : ) (i j) {g : A} elementPower g i elementPower g j
elementPowerWellDefinedZ i j i=j {g} = applyEquality (elementPower g) i=j
elementPowerWellDefinedZ' : (i j : ) (i j) {g : A} (elementPower g i) (elementPower g j)
elementPowerWellDefinedZ' i j i=j {g} = identityOfIndiscernablesRight __ reflexive (elementPowerWellDefinedZ i j i=j)
elementPowerWellDefinedG : (g h : A) (g h) {n : } (elementPower g n) (elementPower h n)
elementPowerWellDefinedG g h g=h {nonneg n} = positiveEltPowerWellDefinedG g h g=h n
elementPowerWellDefinedG g h g=h {negSucc x} = inverseWellDefined G (+WellDefined g=h (positiveEltPowerWellDefinedG g h g=h x))
record CyclicGroup : Set (m n) where
field
generator : A
cyclic : {a : A} (Sg (λ i Setoid.__ S (elementPower generator i) a))