Files
agdaproofs/Groups/Actions/Stabiliser.agda
2020-01-05 15:06:35 +00:00

33 lines
1.4 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Groups.Definition
open import Groups.Subgroups.Definition
open import Groups.Actions.Definition
open import Sets.EquivalenceRelations
open import Groups.Actions.Definition
module Groups.Actions.Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (act : GroupAction G T) where
open GroupAction act
open Setoid T
stabiliserPred : (x : B) (g : A) Set d
stabiliserPred x g = (action g x) x
stabiliserWellDefined : (x : B) {g h : A} Setoid.__ S g h (stabiliserPred x g) stabiliserPred x h
stabiliserWellDefined x {g} {h} g=h gx=x = transitive (actionWellDefined1 (Equivalence.symmetric (Setoid.eq S) g=h)) gx=x
where
open Equivalence eq
open Setoid T
open Equivalence (Setoid.eq T)
stabiliserSubgroup : (x : B) Subgroup G (stabiliserPred x)
Subgroup.isSubset (stabiliserSubgroup x) = stabiliserWellDefined x
Subgroup.closedUnderPlus (stabiliserSubgroup x) gx=x hx=x = transitive associativeAction (transitive (actionWellDefined2 hx=x) gx=x)
Subgroup.containsIdentity (stabiliserSubgroup x) = identityAction
Subgroup.closedUnderInverse (stabiliserSubgroup x) {g} gx=x = transitive (transitive (transitive (actionWellDefined2 (symmetric gx=x)) (symmetric associativeAction)) (actionWellDefined1 (invLeft {g}))) identityAction
where
open Group G