Files
agdaproofs/Groups/Actions/OrbitStabiliser.agda
2019-11-08 13:50:24 +00:00

117 lines
8.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Actions.Definition
open import Groups.Actions.Stabiliser
open import Groups.Groups2
open import Sets.EquivalenceRelations
module Groups.Actions.OrbitStabiliser where
orbitStabiliserEquivRel1 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel1 {T = T} action x g1 g2 = Setoid.__ T (GroupAction.action action g1 x) (GroupAction.action action g2 x)
orbitStabiliserEquivRel2 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel2 {T = T} {_+_ = _+_} {G = G} action x g1 g2 = Setoid.__ T (GroupAction.action action ((Group.inverse G g2) + g1) x) x
osEquivRel1Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel1 action x)
Equivalence.reflexive (osEquivRel1Equiv {T = T} action x) {a} = Equivalence.reflexive (Setoid.eq T)
Equivalence.symmetric (osEquivRel1Equiv {T = T} action x) {a} {b} = Equivalence.symmetric (Setoid.eq T)
Equivalence.transitive (osEquivRel1Equiv {T = T} action x) {a} {b} {c} = Equivalence.transitive (Setoid.eq T)
osEquivRel2Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel2 action x)
Equivalence.reflexive (osEquivRel2Equiv {T = T} {G = G} action x) = transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action)
where
open Equivalence (Setoid.eq T)
Equivalence.symmetric (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {b} {c} b=c = need
where
open Equivalence (Setoid.eq T)
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS ; reflexive to reflexiveS)
open Setoid T
open GroupAction gAction
open Group G
have : action ((inverse c) + b) x x
have = b=c
p : action (inverse (inverse b + c)) x x
p = transitive (actionWellDefined1 (transitiveS (invContravariant G) (Group.+WellDefined G reflexiveS (invInv G)))) have
q : action ((inverse b) + c) (action (inverse (inverse b + c)) x) action ((inverse b) + c) x
q = actionWellDefined2 p
r : action (((inverse b) + c) + (inverse (inverse b + c))) x action ((inverse b) + c) x
r = transitive associativeAction q
s : action identity x action ((inverse b) + c) x
s = transitive (actionWellDefined1 (symmetricS invRight)) r
need : action ((inverse b) + c) x x
need = symmetric (transitive (symmetric identityAction) s)
Equivalence.transitive (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {a} {b} {c} a=b b=c = need
where
open Equivalence (Setoid.eq T)
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; reflexive to reflexiveS ; transitive to transitiveS)
open Setoid T
open GroupAction gAction
open Group G
have1 : action ((inverse c) + b) x x
have1 = b=c
have2 : action ((inverse b) + a) x x
have2 = a=b
p : action ((inverse c) + b) (action (inverse b + a) x) x
p = transitive (actionWellDefined2 have2) have1
q : action ((inverse c + b) + (inverse b + a)) x x
q = transitive associativeAction p
need : action ((inverse c) + a) x x
need = transitive (actionWellDefined1 (transitiveS (+WellDefined reflexiveS (transitiveS (symmetricS identLeft) (+WellDefined (symmetricS invRight) reflexiveS))) (fourWayAssoc G))) q
osEquivRelsEqual' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel2 action x) g h (orbitStabiliserEquivRel1 action x) g h
osEquivRelsEqual' {S = S} {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Equivalence eq
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS)
have : (GroupAction.action action ((inverse h) + g) x) x
have = g=h
p : (GroupAction.action action (inverse h) (GroupAction.action action g x)) x
p = transitive (symmetric (GroupAction.associativeAction action)) have
q : (GroupAction.action action h (GroupAction.action action (inverse h) (GroupAction.action action g x))) GroupAction.action action h x
q = GroupAction.actionWellDefined2 action p
r : (GroupAction.action action (h + inverse h) (GroupAction.action action g x)) GroupAction.action action h x
r = transitive (GroupAction.associativeAction action) q
s : (GroupAction.action action identity (GroupAction.action action g x)) GroupAction.action action h x
s = transitive (GroupAction.actionWellDefined1 action (symmetricS (Group.invRight G))) r
need : (GroupAction.action action g x) (GroupAction.action action h x)
need = transitive (symmetric (GroupAction.identityAction action)) s
osEquivRelsEqual : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel1 action x) g h (orbitStabiliserEquivRel2 action x) g h
osEquivRelsEqual {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Equivalence eq
have : (GroupAction.action action g x) (GroupAction.action action h x)
have = g=h
p : GroupAction.action action (inverse h) (GroupAction.action action g x) GroupAction.action action (inverse h) (GroupAction.action action h x)
p = GroupAction.actionWellDefined2 action have
need : (GroupAction.action action ((inverse h) + g) x) x
need = transitive (GroupAction.associativeAction action) (transitive p (transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action))))
orbitStabiliserBijection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) A ((Stabiliser action x) && Orbit action x)
orbitStabiliserBijection action x g = stab {!GroupAction.action action ? ?!} {!!} ,, orbitElt g
where
osBijWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {r s : A} (Setoid.__ S r s) Setoid.__ (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x r) (orbitStabiliserBijection action x s)
_&&_.fst (osBijWellDefined action x r~s) = {!!}
_&&_.snd (osBijWellDefined action x r~s) = GroupAction.actionWellDefined1 action r~s
orbitStabiliserTheorem : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) SetoidBijection S (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x)
SetoidInjection.+WellDefined (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) = osBijWellDefined action x
SetoidInjection.injective (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) {g} {h} (fst ,, gx=hx) = {!!}
SetoidSurjection.+WellDefined (SetoidBijection.surj (orbitStabiliserTheorem action x)) = osBijWellDefined action x
SetoidSurjection.surjective (SetoidBijection.surj (orbitStabiliserTheorem action x)) {stab g gx=x ,, orbitElt h} = h , ({!!} ,, {!!})