Files
agdaproofs/Groups/ActionIsSymmetry.agda
2020-01-05 15:06:35 +00:00

29 lines
1.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Groups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.SymmetricGroups.Definition
open import Groups.Actions.Definition
open import Sets.EquivalenceRelations
module Groups.ActionIsSymmetry {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (gAction : GroupAction G T) where
open Group G
open GroupAction gAction
actionPermutation : (g : A) SymmetryGroupElements T
actionPermutation g = sym {f = λ x action g x} (record { inj = record { injective = inj ; wellDefined = actionWellDefined2 } ; surj = record { surjective = surj ; wellDefined = actionWellDefined2 } })
where
open Setoid T
open Equivalence eq
inj : {x y : B} (Setoid.__ T (action g x) (action g y)) Setoid.__ T x y
inj {x} {y} gx=gy = transitive (symmetric identityAction) (transitive (transitive (symmetric (actionWellDefined1 (invLeft {g}))) (transitive (transitive associativeAction (transitive (actionWellDefined2 gx=gy) (symmetric associativeAction))) (actionWellDefined1 (invLeft {g})))) identityAction)
surj : {x : B} Sg B (λ a action g a x)
surj {x} = action (inverse g) x , transitive (symmetric associativeAction) (transitive (actionWellDefined1 invRight) identityAction)
actionPermutationMapIsHom : GroupHom G (symmetricGroup T) actionPermutation
GroupHom.groupHom actionPermutationMapIsHom = associativeAction
GroupHom.wellDefined actionPermutationMapIsHom x=y = actionWellDefined1 x=y