Files
agdaproofs/Fields/Orders/Partial/Definition.agda
2020-01-05 15:06:35 +00:00

19 lines
651 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Setoids.Setoids
open import Setoids.Orders
open import Functions
open import Fields.Fields
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Partial.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) where
open Ring R
record PartiallyOrderedField {p} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc (m n p)) where
field
oRing : PartiallyOrderedRing R pOrder