mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-07 04:48:41 +00:00
47 lines
1.4 KiB
Agda
47 lines
1.4 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
||
|
||
open import LogicalFormulae
|
||
open import Groups.Definition
|
||
open import Rings.Definition
|
||
open import Setoids.Setoids
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
|
||
module Fields.Fields where
|
||
|
||
record Field {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) : Set (lsuc m ⊔ n) where
|
||
open Ring R
|
||
open Group additiveGroup
|
||
open Setoid S
|
||
field
|
||
allInvertible : (a : A) → ((a ∼ Group.0G (Ring.additiveGroup R)) → False) → Sg A (λ t → t * a ∼ 1R)
|
||
nontrivial : (0R ∼ 1R) → False
|
||
0F : A
|
||
0F = Ring.0R R
|
||
|
||
record Field' {m n : _} : Set (lsuc m ⊔ lsuc n) where
|
||
field
|
||
A : Set m
|
||
S : Setoid {m} {n} A
|
||
_+_ : A → A → A
|
||
_*_ : A → A → A
|
||
R : Ring S _+_ _*_
|
||
isField : Field R
|
||
|
||
encapsulateField : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (F : Field R) → Field'
|
||
encapsulateField {A = A} {S = S} {_+_} {_*_} {R} F = record { A = A ; S = S ; _+_ = _+_ ; _*_ = _*_ ; R = R ; isField = F }
|
||
|
||
|
||
{-
|
||
record OrderedField {n} {A : Set n} {R : Ring A} (F : Field R) : Set (lsuc n) where
|
||
open Field F
|
||
field
|
||
ord : TotalOrder A
|
||
open TotalOrder ord
|
||
open Ring R
|
||
field
|
||
productPos : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b))
|
||
orderRespectsAddition : {a b c : A} → (a < b) → (a + c) < (b + c)
|
||
|
||
-}
|