Files
agdaproofs/Fields/CauchyCompletion/Group.agda
2020-01-05 15:06:35 +00:00

68 lines
5.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Homomorphisms.Definition
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
module Fields.CauchyCompletion.Group {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open TotallyOrderedRing order
open Field F
open Group (Ring.additiveGroup R)
open import Rings.Orders.Total.Lemmas order
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Addition order F charNot2
open import Fields.CauchyCompletion.Setoid order F charNot2
Cassoc : {a b c : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (a +C (b +C c)) ((a +C b) +C c)
Cassoc {a} {b} {c} ε 0<e = 0 , ans
where
ans : {m : } 0 <N m abs (index (CauchyCompletion.elts ((a +C (b +C c)) +C (-C ((a +C b) +C c)))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C (b +C c))) (map inverse (CauchyCompletion.elts ((a +C b) +C c))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (apply _+_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (CauchyCompletion.elts c) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _+_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (transferToRight'' (Ring.additiveGroup R) +Associative)) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e
CidentRight : {a : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (a +C injection 0G) a
CidentRight {a} ε 0<e = 0 , ans
where
ans : {m : } 0 <N m abs (index (apply _+_ (CauchyCompletion.elts (a +C injection 0G)) (map inverse (CauchyCompletion.elts a))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C injection 0G)) (map inverse (CauchyCompletion.elts a)) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (constSequence 0G) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | indexAndConst 0G m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.transitive eq (+WellDefined (identRight) (Equivalence.reflexive eq)) (invRight))) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e
CidentLeft : {a : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (injection 0G +C a) a
CidentLeft {a} = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection 0G +C a} {a +C injection 0G} {a} (+CCommutative {injection 0G} {a}) (CidentRight {a})
CinvRight : {a : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (a +C (-C a)) (injection 0G)
CinvRight {a} ε 0<e = 0 , ans
where
ans : {m : } (0 <N m) abs (index (apply _+_ (CauchyCompletion.elts (a +C (-C a))) (map inverse (CauchyCompletion.elts (injection 0G)))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C (-C a))) (map inverse (CauchyCompletion.elts (injection 0G))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts a)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | equalityCommutative (mapAndIndex (constSequence 0G) inverse m) | indexAndConst 0G m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.transitive eq (+WellDefined invRight (invIdent (Ring.additiveGroup R))) identRight)) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e
CGroup : Group cauchyCompletionSetoid _+C_
Group.+WellDefined CGroup {a} {b} {c} {d} x y = additionWellDefined {a} {c} {b} {d} x y
Group.0G CGroup = injection 0G
Group.inverse CGroup = -C_
Group.+Associative CGroup {a} {b} {c} = Cassoc {a} {b} {c}
Group.identRight CGroup {a} = CidentRight {a}
Group.identLeft CGroup {a} = CidentLeft {a}
Group.invLeft CGroup {a} = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {(-C a) +C a} {a +C (-C a)} {injection 0G} (+CCommutative { -C a} {a}) (CinvRight {a})
Group.invRight CGroup {a} = CinvRight {a}
CInjectionGroupHom : GroupHom (Ring.additiveGroup R) CGroup injection
GroupHom.groupHom CInjectionGroupHom {x} {y} = additionHom x y
GroupHom.wellDefined CInjectionGroupHom {x} {y} x=y = SetoidInjection.wellDefined CInjection {x} {y} x=y