mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 22:58:40 +00:00
66 lines
3.6 KiB
Agda
66 lines
3.6 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
open import Setoids.Setoids
|
||
open import Rings.Definition
|
||
open import Rings.Lemmas
|
||
open import Rings.Order
|
||
open import Groups.Definition
|
||
open import Groups.Groups
|
||
open import Fields.Fields
|
||
open import Sets.EquivalenceRelations
|
||
open import Sequences
|
||
open import Setoids.Orders
|
||
open import Functions
|
||
open import LogicalFormulae
|
||
open import Numbers.Naturals.Naturals
|
||
|
||
module Fields.CauchyCompletion.Field {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where
|
||
|
||
open Setoid S
|
||
open SetoidTotalOrder tOrder
|
||
open SetoidPartialOrder pOrder
|
||
open Equivalence eq
|
||
open OrderedRing order
|
||
open Field F
|
||
open Group (Ring.additiveGroup R)
|
||
|
||
open import Rings.Orders.Lemmas(order)
|
||
open import Fields.CauchyCompletion.Definition order F
|
||
open import Fields.CauchyCompletion.Multiplication order F charNot2
|
||
open import Fields.CauchyCompletion.Addition order F charNot2
|
||
open import Fields.CauchyCompletion.Setoid order F charNot2
|
||
open import Fields.CauchyCompletion.Group order F charNot2
|
||
open import Fields.CauchyCompletion.Ring order F charNot2
|
||
open import Fields.CauchyCompletion.Comparison order F charNot2
|
||
|
||
Cnontrivial : (pr : Setoid._∼_ cauchyCompletionSetoid (injection (Ring.0R R)) (injection (Ring.1R R))) → False
|
||
Cnontrivial pr with pr (Ring.1R R) (0<1 (charNot2ImpliesNontrivial charNot2))
|
||
Cnontrivial pr | N , b with b {succ N} (le 0 refl)
|
||
... | bl rewrite indexAndApply (constSequence 0G) (map inverse (constSequence (Ring.1R R))) _+_ {N} | indexAndConst 0G N | equalityCommutative (mapAndIndex (constSequence (Ring.1R R)) inverse N) | indexAndConst (Ring.1R R) N = irreflexive {Ring.1R R} (<WellDefined (Equivalence.transitive eq (absWellDefined _ _ identLeft) (Equivalence.transitive eq (Equivalence.symmetric eq (absNegation (Ring.1R R))) abs1Is1)) (Equivalence.reflexive eq) bl)
|
||
|
||
boundedMap : A → A
|
||
boundedMap a with SetoidTotalOrder.totality tOrder 0G a
|
||
boundedMap a | inl (inl x) = underlying (allInvertible a λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr x))
|
||
boundedMap a | inl (inr x) = underlying (allInvertible a λ pr → irreflexive (<WellDefined pr (Equivalence.reflexive eq) x))
|
||
boundedMap a | inr x = Ring.1R R
|
||
|
||
-- TODO: make a real which is equivalent by approximating from above;
|
||
-- make a real which is equivalent by approximating from below.
|
||
-- Use not-zero to show that one of those sequences must pass 0 at some point.
|
||
aNonzeroImpliesBounded : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → (a <Cr 0G) || 0G r<C a
|
||
aNonzeroImpliesBounded a a!=0 = {!!}
|
||
|
||
1/aConverges : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → cauchy (map boundedMap (CauchyCompletion.elts a))
|
||
1/aConverges a a!=0 e 0<e = {!!}
|
||
|
||
1/a : (a : CauchyCompletion) → (Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → CauchyCompletion
|
||
1/a a a!=0 = record { elts = map boundedMap (CauchyCompletion.elts a) ; converges = 1/aConverges a a!=0 }
|
||
|
||
1/a*a=1 : (a : CauchyCompletion) (pr : Setoid._∼_ cauchyCompletionSetoid a (injection 0G) → False) → Setoid._∼_ cauchyCompletionSetoid ((1/a a pr) *C a) (injection (Ring.1R R))
|
||
1/a*a=1 a a!=0 e 0<e = {!!}
|
||
|
||
CField : Field CRing
|
||
Field.allInvertible CField a a!=0 = (1/a a a!=0) , 1/a*a=1 a a!=0
|
||
Field.nontrivial CField = Cnontrivial
|