Files
agdaproofs/Fields/CauchyCompletion/Field.agda
2019-11-02 08:34:09 +00:00

66 lines
3.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Order
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Naturals
module Fields.CauchyCompletion.Field {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) where
open Setoid S
open SetoidTotalOrder tOrder
open SetoidPartialOrder pOrder
open Equivalence eq
open OrderedRing order
open Field F
open Group (Ring.additiveGroup R)
open import Rings.Orders.Lemmas(order)
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Multiplication order F charNot2
open import Fields.CauchyCompletion.Addition order F charNot2
open import Fields.CauchyCompletion.Setoid order F charNot2
open import Fields.CauchyCompletion.Group order F charNot2
open import Fields.CauchyCompletion.Ring order F charNot2
open import Fields.CauchyCompletion.Comparison order F charNot2
Cnontrivial : (pr : Setoid.__ cauchyCompletionSetoid (injection (Ring.0R R)) (injection (Ring.1R R))) False
Cnontrivial pr with pr (Ring.1R R) (0<1 (charNot2ImpliesNontrivial charNot2))
Cnontrivial pr | N , b with b {succ N} (le 0 refl)
... | bl rewrite indexAndApply (constSequence 0G) (map inverse (constSequence (Ring.1R R))) _+_ {N} | indexAndConst 0G N | equalityCommutative (mapAndIndex (constSequence (Ring.1R R)) inverse N) | indexAndConst (Ring.1R R) N = irreflexive {Ring.1R R} (<WellDefined (Equivalence.transitive eq (absWellDefined _ _ identLeft) (Equivalence.transitive eq (Equivalence.symmetric eq (absNegation (Ring.1R R))) abs1Is1)) (Equivalence.reflexive eq) bl)
boundedMap : A A
boundedMap a with SetoidTotalOrder.totality tOrder 0G a
boundedMap a | inl (inl x) = underlying (allInvertible a λ pr irreflexive (<WellDefined (Equivalence.reflexive eq) pr x))
boundedMap a | inl (inr x) = underlying (allInvertible a λ pr irreflexive (<WellDefined pr (Equivalence.reflexive eq) x))
boundedMap a | inr x = Ring.1R R
-- TODO: make a real which is equivalent by approximating from above;
-- make a real which is equivalent by approximating from below.
-- Use not-zero to show that one of those sequences must pass 0 at some point.
aNonzeroImpliesBounded : (a : CauchyCompletion) (Setoid.__ cauchyCompletionSetoid a (injection 0G) False) (a <Cr 0G) || 0G r<C a
aNonzeroImpliesBounded a a!=0 = {!!}
1/aConverges : (a : CauchyCompletion) (Setoid.__ cauchyCompletionSetoid a (injection 0G) False) cauchy (map boundedMap (CauchyCompletion.elts a))
1/aConverges a a!=0 e 0<e = {!!}
1/a : (a : CauchyCompletion) (Setoid.__ cauchyCompletionSetoid a (injection 0G) False) CauchyCompletion
1/a a a!=0 = record { elts = map boundedMap (CauchyCompletion.elts a) ; converges = 1/aConverges a a!=0 }
1/a*a=1 : (a : CauchyCompletion) (pr : Setoid.__ cauchyCompletionSetoid a (injection 0G) False) Setoid.__ cauchyCompletionSetoid ((1/a a pr) *C a) (injection (Ring.1R R))
1/a*a=1 a a!=0 e 0<e = {!!}
CField : Field CRing
Field.allInvertible CField a a!=0 = (1/a a a!=0) , 1/a*a=1 a a!=0
Field.nontrivial CField = Cnontrivial