Files
agdaproofs/Categories/Functor/Definition.agda
2020-01-05 15:06:35 +00:00

15 lines
781 B
Agda

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Categories.Definition
module Categories.Functor.Definition where
record Functor {a b c d : _} (C : Category {a} {b}) (D : Category {c} {d}) : Set (a b c d) where
field
onObj : Category.objects C Category.objects D
onArrow : {S T : Category.objects C} Category.arrows C S T Category.arrows D (onObj S) (onObj T)
mapId : {T : Category.objects C} onArrow (Category.id C T) Category.id D (onObj T)
mapCompose : {X Y Z : Category.objects C} (f : Category.arrows C X Y) (g : Category.arrows C Y Z) onArrow (Category._∘_ C g f) Category._∘_ D (onArrow g) (onArrow f)