Files
agdaproofs/Groups/Actions.agda
2019-09-28 22:24:41 +01:00

284 lines
23 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Groups.Lemmas
open import Groups.Groups
open import Groups.Groups2
open import Sets.EquivalenceRelations
module Groups.Actions where
record GroupAction {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A A A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) : Set (m n o p) where
open Group G
open Setoid S renaming (__ to _G_)
open Setoid X renaming (__ to _X_)
field
action : A B B
actionWellDefined1 : {g h : A} {x : B} (g G h) action g x X action h x
actionWellDefined2 : {g : A} {x y : B} (x X y) action g x X action g y
identityAction : {x : B} action identity x X x
associativeAction : {x : B} {g h : A} action (g · h) x X action g (action h x)
trivialAction : {m n o p : _} {A : Set m} {S : Setoid {m} {o} A} {_·_ : A A A} {B : Set n} (G : Group S _·_) (X : Setoid {n} {p} B) GroupAction G X
trivialAction G X = record { action = λ _ x x ; actionWellDefined1 = λ _ reflexive ; actionWellDefined2 = λ wd1 wd1 ; identityAction = reflexive ; associativeAction = reflexive }
where
open Setoid X renaming (eq to setoidEq)
open Equivalence (Setoid.eq X)
leftRegularAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) GroupAction G S
GroupAction.action (leftRegularAction {_·_ = _·_} G) g h = g · h
where
open Group G
GroupAction.actionWellDefined1 (leftRegularAction {S = S} G) eq1 = wellDefined eq1 reflexive
where
open Group G
open Setoid S renaming (eq to setoidEq)
open Equivalence setoidEq
GroupAction.actionWellDefined2 (leftRegularAction {S = S} G) {g} {x} {y} eq1 = wellDefined reflexive eq1
where
open Group G
open Setoid S
open Equivalence eq
GroupAction.identityAction (leftRegularAction G) = multIdentLeft
where
open Group G
GroupAction.associativeAction (leftRegularAction {S = S} G) = symmetric multAssoc
where
open Group G
open Setoid S
open Equivalence eq
conjugationAction : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) GroupAction G S
conjugationAction {S = S} {_·_ = _·_} G = record { action = λ g h (g · h) · (inverse g) ; actionWellDefined1 = λ gh wellDefined (wellDefined gh reflexive) (inverseWellDefined G gh) ; actionWellDefined2 = λ x~y wellDefined (wellDefined reflexive x~y) reflexive ; identityAction = transitive (wellDefined reflexive (invIdentity G)) (transitive multIdentRight multIdentLeft) ; associativeAction = λ {x} {g} {h} transitive (wellDefined reflexive (invContravariant G)) (transitive multAssoc (wellDefined (fourWayAssoc' G) reflexive)) }
where
open Group G
open Setoid S
open Equivalence eq
conjugationNormalSubgroupAction : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) {underF : A B} (f : GroupHom G H underF) GroupAction G (quotientGroupSetoid G f)
GroupAction.action (conjugationNormalSubgroupAction {_·A_ = _·A_} G H {f} fHom) a b = a ·A (b ·A (Group.inverse G a))
GroupAction.actionWellDefined1 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {g} {h} {x} g~h = ans
where
open Group G
open Setoid T
open Equivalence eq
ans : f ((g ·A (x ·A (inverse g))) ·A inverse (h ·A (x ·A inverse h))) Group.identity H
ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.wellDefined G g~h (Group.wellDefined G (Equivalence.reflexive (Setoid.eq S)) (inverseWellDefined G g~h))))) (imageOfIdentityIsIdentity fHom)
GroupAction.actionWellDefined2 (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} {_·B_ = _·B_} G H {f} fHom) {g} {x} {y} x~y = ans
where
open Group G
open Setoid T
open Equivalence (Setoid.eq S)
open Equivalence (Setoid.eq T) renaming (transitive to transitiveH ; symmetric to symmetricH ; reflexive to reflexiveH)
input : f (x ·A inverse y) Group.identity H
input = x~y
p1 : Setoid.__ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g))
p1 = Group.wellDefined G reflexive (invContravariant G)
p2 : Setoid.__ S ((g ·A (x ·A inverse g)) ·A (inverse (y ·A (inverse g)) ·A inverse g)) ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g))
p2 = Group.wellDefined G reflexive (Group.wellDefined G (invContravariant G) reflexive)
p3 : Setoid.__ S ((g ·A (x ·A inverse g)) ·A ((inverse (inverse g) ·A inverse y) ·A inverse g)) (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g))
p3 = symmetric (fourWayAssoc G)
p4 : Setoid.__ S (g ·A (((x ·A inverse g) ·A (inverse (inverse g) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g))
p4 = Group.wellDefined G reflexive (Group.wellDefined G (symmetric (fourWayAssoc G)) reflexive)
p5 : Setoid.__ S (g ·A ((x ·A ((inverse g ·A inverse (inverse g)) ·A inverse y)) ·A inverse g)) (g ·A ((x ·A (identity ·A inverse y)) ·A inverse g))
p5 = Group.wellDefined G reflexive (Group.wellDefined G (Group.wellDefined G reflexive (Group.wellDefined G invRight reflexive)) reflexive)
p6 : Setoid.__ S (g ·A ((x ·A (identity ·A inverse y)) ·A inverse g)) (g ·A ((x ·A inverse y) ·A inverse g))
p6 = Group.wellDefined G reflexive (Group.wellDefined G (Group.wellDefined G reflexive multIdentLeft) reflexive)
intermediate : Setoid.__ S ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) (g ·A ((x ·A inverse y) ·A inverse g))
intermediate = transitive p1 (transitive p2 (transitive p3 (transitive p4 (transitive p5 p6))))
p7 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) f (g ·A ((x ·A inverse y) ·A inverse g))
p7 = GroupHom.wellDefined fHom intermediate
p8 : f (g ·A ((x ·A inverse y) ·A inverse g)) (f g) ·B (f ((x ·A inverse y) ·A inverse g))
p8 = GroupHom.groupHom fHom
p9 : (f g) ·B (f ((x ·A inverse y) ·A inverse g)) (f g) ·B (f (x ·A inverse y) ·B f (inverse g))
p9 = Group.wellDefined H reflexiveH (GroupHom.groupHom fHom)
p10 : (f g) ·B (f (x ·A inverse y) ·B f (inverse g)) (f g) ·B (Group.identity H ·B f (inverse g))
p10 = Group.wellDefined H reflexiveH (Group.wellDefined H input reflexiveH)
p11 : (f g) ·B (Group.identity H ·B f (inverse g)) (f g) ·B (f (inverse g))
p11 = Group.wellDefined H reflexiveH (Group.multIdentLeft H)
p12 : (f g) ·B (f (inverse g)) f (g ·A (inverse g))
p12 = symmetricH (GroupHom.groupHom fHom)
intermediate2 : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) (f (g ·A (inverse g)))
intermediate2 = transitiveH p7 (transitiveH p8 (transitiveH p9 (transitiveH p10 (transitiveH p11 p12))))
ans : f ((g ·A (x ·A inverse g)) ·A inverse (g ·A (y ·A inverse g))) Group.identity H
ans = transitiveH intermediate2 (transitiveH (GroupHom.wellDefined fHom invRight) (imageOfIdentityIsIdentity fHom))
GroupAction.identityAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} = ans
where
open Group G
open Setoid S
open Setoid T renaming (__ to _T_)
open Equivalence (Setoid.eq T)
i : Setoid.__ S (x ·A inverse identity) x
i = Equivalence.transitive (Setoid.eq S) (wellDefined (Equivalence.reflexive (Setoid.eq S)) (invIdentity G)) multIdentRight
h : identity ·A (x ·A inverse identity) x
h = Equivalence.transitive (Setoid.eq S) multIdentLeft i
g : ((identity ·A (x ·A inverse identity)) ·A inverse x) identity
g = transferToRight'' G h
ans : f ((identity ·A (x ·A inverse identity)) ·A Group.inverse G x) T Group.identity H
ans = transitive (GroupHom.wellDefined fHom g) (imageOfIdentityIsIdentity fHom)
GroupAction.associativeAction (conjugationNormalSubgroupAction {S = S} {T = T} {_·A_ = _·A_} G H {f} fHom) {x} {g} {h} = ans
where
open Group G
open Setoid T renaming (__ to _T_)
open Setoid S renaming (__ to _S_)
open Equivalence (Setoid.eq T) renaming (transitive to transitiveH)
open Equivalence (Setoid.eq S) renaming (transitive to transitiveG ; symmetric to symmetricG ; reflexive to reflexiveG)
ans : f (((g ·A h) ·A (x ·A inverse (g ·A h))) ·A inverse ((g ·A ((h ·A (x ·A inverse h)) ·A inverse g)))) T Group.identity H
ans = transitiveH (GroupHom.wellDefined fHom (transferToRight'' G (transitiveG (symmetricG multAssoc) (Group.wellDefined G reflexiveG (transitiveG (wellDefined reflexiveG (transitiveG (wellDefined reflexiveG (invContravariant G)) multAssoc)) multAssoc))))) (imageOfIdentityIsIdentity fHom)
data Stabiliser {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
stab : (g : A) Setoid.__ T (GroupAction.action action g x) x Stabiliser action x
stabiliserSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Stabiliser action x)
Setoid.__ (stabiliserSetoid {S = S} action x) (stab g gx=x) (stab h hx=x) = Setoid.__ S g h
Equivalence.reflexive (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} = Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} {stab h _} = Equivalence.symmetric (Setoid.eq S)
Equivalence.transitive (Setoid.eq (stabiliserSetoid {S = S} action x)) {stab g _} {stab h _} {stab i _} = Equivalence.transitive (Setoid.eq S)
stabiliserGroupOp : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x Stabiliser action x Stabiliser action x
stabiliserGroupOp {T = T} {_+_ = _+_} action (stab p px=x) (stab q qx=x) = stab (p + q) (transitive (GroupAction.associativeAction action) (transitive (GroupAction.actionWellDefined2 action qx=x) px=x))
where
open Setoid T
open Equivalence eq
stabiliserGroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Group (stabiliserSetoid action x) (stabiliserGroupOp action)
Group.wellDefined (stabiliserGroup {T = T} {G = G} action {x}) {stab m mx=x} {stab n nx=x} {stab r rx=x} {stab s sx=x} m=r n=s = Group.wellDefined G m=r n=s
where
open Setoid T
open Equivalence eq
Group.identity (stabiliserGroup {G = G} action) = stab (Group.identity G) (GroupAction.identityAction action)
Group.inverse (stabiliserGroup {T = T} {_+_ = _+_} {G = G} action {x}) (stab g gx=x) = stab (Group.inverse G g) (transitive {_} {GroupAction.action action ((inverse g) + g) x} (symmetric (transitive (GroupAction.associativeAction action) (GroupAction.actionWellDefined2 action gx=x))) (transitive (GroupAction.actionWellDefined1 action invLeft) (GroupAction.identityAction action)))
where
open Group G
open Setoid T
open Equivalence eq
Group.multAssoc (stabiliserGroup {G = G} action) {stab m mx=x} {stab n nx=x} {stab o ox=x} = Group.multAssoc G
Group.multIdentRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.multIdentRight G
Group.multIdentLeft (stabiliserGroup {G = G} action) {stab m mx=x }= Group.multIdentLeft G
Group.invLeft (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invLeft G
Group.invRight (stabiliserGroup {G = G} action) {stab m mx=x} = Group.invRight G
stabiliserInjection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Stabiliser action x A
stabiliserInjection action (stab g gx=x) = g
stabiliserInjectionIsHom : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} GroupHom (stabiliserGroup action {x}) G (stabiliserInjection action {x})
GroupHom.groupHom (stabiliserInjectionIsHom {S = S} action) {stab g gx=x} {stab h hx=x} = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (stabiliserInjectionIsHom action) {stab g gx=x} {stab h hx=x} g=h = g=h
stabiliserIsSubgroup : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) {x : B} Subgroup G (stabiliserGroup action) (stabiliserInjectionIsHom action {x})
SetoidInjection.wellDefined (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h
SetoidInjection.injective (Subgroup.fInj (stabiliserIsSubgroup action)) {stab g gx=x} {stab h hx=x} g=h = g=h
orbitStabiliserEquivRel1 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel1 {T = T} action x g1 g2 = Setoid.__ T (GroupAction.action action g1 x) (GroupAction.action action g2 x)
orbitStabiliserEquivRel2 : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Rel A
orbitStabiliserEquivRel2 {T = T} {_+_ = _+_} {G = G} action x g1 g2 = Setoid.__ T (GroupAction.action action ((Group.inverse G g2) + g1) x) x
osEquivRel1Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel1 action x)
Equivalence.reflexive (osEquivRel1Equiv {T = T} action x) {a} = Equivalence.reflexive (Setoid.eq T)
Equivalence.symmetric (osEquivRel1Equiv {T = T} action x) {a} {b} = Equivalence.symmetric (Setoid.eq T)
Equivalence.transitive (osEquivRel1Equiv {T = T} action x) {a} {b} {c} = Equivalence.transitive (Setoid.eq T)
osEquivRel2Equiv : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Equivalence (orbitStabiliserEquivRel2 action x)
Equivalence.reflexive (osEquivRel2Equiv {T = T} {G = G} action x) = transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action)
where
open Equivalence (Setoid.eq T)
Equivalence.symmetric (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {b} {c} b=c = need
where
open Equivalence (Setoid.eq T)
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS ; reflexive to reflexiveS)
open Setoid T
open GroupAction gAction
open Group G
have : action ((inverse c) + b) x x
have = b=c
p : action (inverse (inverse b + c)) x x
p = transitive (actionWellDefined1 (transitiveS (invContravariant G) (Group.wellDefined G reflexiveS (invInv G)))) have
q : action ((inverse b) + c) (action (inverse (inverse b + c)) x) action ((inverse b) + c) x
q = actionWellDefined2 p
r : action (((inverse b) + c) + (inverse (inverse b + c))) x action ((inverse b) + c) x
r = transitive associativeAction q
s : action identity x action ((inverse b) + c) x
s = transitive (actionWellDefined1 (symmetricS invRight)) r
need : action ((inverse b) + c) x x
need = symmetric (transitive (symmetric identityAction) s)
Equivalence.transitive (osEquivRel2Equiv {S = S} {T = T} {_+_ = _+_} {G = G} gAction x) {a} {b} {c} a=b b=c = need
where
open Equivalence (Setoid.eq T)
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; reflexive to reflexiveS ; transitive to transitiveS)
open Setoid T
open GroupAction gAction
open Group G
have1 : action ((inverse c) + b) x x
have1 = b=c
have2 : action ((inverse b) + a) x x
have2 = a=b
p : action ((inverse c) + b) (action (inverse b + a) x) x
p = transitive (actionWellDefined2 have2) have1
q : action ((inverse c + b) + (inverse b + a)) x x
q = transitive associativeAction p
need : action ((inverse c) + a) x x
need = transitive (actionWellDefined1 (transitiveS (wellDefined reflexiveS (transitiveS (symmetricS multIdentLeft) (wellDefined (symmetricS invRight) reflexiveS))) (fourWayAssoc G))) q
osEquivRelsEqual' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel2 action x) g h (orbitStabiliserEquivRel1 action x) g h
osEquivRelsEqual' {S = S} {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Equivalence eq
open Equivalence (Setoid.eq S) renaming (symmetric to symmetricS ; transitive to transitiveS)
have : (GroupAction.action action ((inverse h) + g) x) x
have = g=h
p : (GroupAction.action action (inverse h) (GroupAction.action action g x)) x
p = transitive (symmetric (GroupAction.associativeAction action)) have
q : (GroupAction.action action h (GroupAction.action action (inverse h) (GroupAction.action action g x))) GroupAction.action action h x
q = GroupAction.actionWellDefined2 action p
r : (GroupAction.action action (h + inverse h) (GroupAction.action action g x)) GroupAction.action action h x
r = transitive (GroupAction.associativeAction action) q
s : (GroupAction.action action identity (GroupAction.action action g x)) GroupAction.action action h x
s = transitive (GroupAction.actionWellDefined1 action (symmetricS (Group.invRight G))) r
need : (GroupAction.action action g x) (GroupAction.action action h x)
need = transitive (symmetric (GroupAction.identityAction action)) s
osEquivRelsEqual : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {g h : A} (orbitStabiliserEquivRel1 action x) g h (orbitStabiliserEquivRel2 action x) g h
osEquivRelsEqual {T = T} {_+_ = _+_} {G = G} action x {g} {h} g=h = need
where
open Setoid T
open Group G
open Equivalence eq
have : (GroupAction.action action g x) (GroupAction.action action h x)
have = g=h
p : GroupAction.action action (inverse h) (GroupAction.action action g x) GroupAction.action action (inverse h) (GroupAction.action action h x)
p = GroupAction.actionWellDefined2 action have
need : (GroupAction.action action ((inverse h) + g) x) x
need = transitive (GroupAction.associativeAction action) (transitive p (transitive (symmetric (GroupAction.associativeAction action)) (transitive (GroupAction.actionWellDefined1 action (Group.invLeft G)) (GroupAction.identityAction action))))
data Orbit {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) : Set (a b c d) where
orbitElt : (g : A) Orbit action x
orbitSetoid : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) Setoid (Orbit action x)
Setoid.__ (orbitSetoid {T = T} action x) (orbitElt a) (orbitElt b) = Setoid.__ T (GroupAction.action action a x) (GroupAction.action action b x)
Equivalence.reflexive (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} = Equivalence.reflexive (Setoid.eq T)
Equivalence.symmetric (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} {orbitElt h} = Equivalence.symmetric (Setoid.eq T)
Equivalence.transitive (Setoid.eq (orbitSetoid {T = T} action x)) {orbitElt g} {orbitElt h} {orbitElt i} = Equivalence.transitive (Setoid.eq T)
orbitStabiliserBijection : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) A ((Stabiliser action x) && Orbit action x)
orbitStabiliserBijection action x g = stab {!GroupAction.action action ? ?!} {!!} ,, orbitElt g
where
osBijWellDefined : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) {r s : A} (Setoid.__ S r s) Setoid.__ (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x r) (orbitStabiliserBijection action x s)
_&&_.fst (osBijWellDefined action x r~s) = {!!}
_&&_.snd (osBijWellDefined action x r~s) = GroupAction.actionWellDefined1 action r~s
orbitStabiliserTheorem : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+_ : A A A} {G : Group S _+_} (action : GroupAction G T) (x : B) SetoidBijection S (directSumSetoid (stabiliserSetoid action x) (orbitSetoid action x)) (orbitStabiliserBijection action x)
SetoidInjection.wellDefined (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) = osBijWellDefined action x
SetoidInjection.injective (SetoidBijection.inj (orbitStabiliserTheorem {S = S} action x)) {g} {h} (fst ,, gx=hx) = {!!}
SetoidSurjection.wellDefined (SetoidBijection.surj (orbitStabiliserTheorem action x)) = osBijWellDefined action x
SetoidSurjection.surjective (SetoidBijection.surj (orbitStabiliserTheorem action x)) {stab g gx=x ,, orbitElt h} = h , ({!!} ,, {!!})