Files
agdaproofs/Numbers/Naturals/Order/Lemmas.agda

84 lines
4.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Semirings.Definition
open import Numbers.Naturals.Order
open import Numbers.Naturals.Semiring
open import Orders
module Numbers.Naturals.Order.Lemmas where
open Semiring Semiring
inequalityShrinkRight : {a b c : } a +N b <N c b <N c
inequalityShrinkRight {a} {b} {c} (le x proof) = le (x +N a) (transitivity (applyEquality succ (equalityCommutative (Semiring.+Associative Semiring x a b))) proof)
inequalityShrinkLeft : {a b c : } a +N b <N c a <N c
inequalityShrinkLeft {a} {b} {c} (le x proof) = le (x +N b) (transitivity (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative Semiring x b a)) (applyEquality (x +N_) (Semiring.commutative Semiring b a)))) proof)
productCancelsRight : (a b c : ) (zero <N a) (b *N a c *N a) (b c)
productCancelsRight a zero zero aPos eq = refl
productCancelsRight zero zero (succ c) (le x ()) eq
productCancelsRight (succ a) zero (succ c) aPos eq = contr
where
h : zero succ c *N succ a
h = eq
contr : zero succ c
contr = exFalso (naughtE h)
productCancelsRight zero (succ b) zero (le x ()) eq
productCancelsRight (succ a) (succ b) zero aPos eq = contr
where
h : succ b *N succ a zero
h = eq
contr : succ b zero
contr = exFalso (naughtE (equalityCommutative h))
productCancelsRight zero (succ b) (succ c) (le x ()) eq
productCancelsRight (succ a) (succ b) (succ c) aPos eq = applyEquality succ (productCancelsRight (succ a) b c aPos l)
where
i : succ a +N b *N succ a succ c *N succ a
i = eq
j : succ c *N succ a succ a +N c *N succ a
j = refl
k : succ a +N b *N succ a succ a +N c *N succ a
k = transitivity i j
l : b *N succ a c *N succ a
l = canSubtractFromEqualityLeft {succ a} {b *N succ a} {c *N succ a} k
productCancelsLeft : (a b c : ) (zero <N a) (a *N b a *N c) (b c)
productCancelsLeft a b c aPos pr = productCancelsRight a b c aPos j
where
i : b *N a a *N c
i = identityOfIndiscernablesLeft _≡_ pr (multiplicationNIsCommutative a b)
j : b *N a c *N a
j = identityOfIndiscernablesRight _≡_ i (multiplicationNIsCommutative a c)
productCancelsRight' : (a b c : ) (b *N a c *N a) (a zero) || (b c)
productCancelsRight' zero b c pr = inl refl
productCancelsRight' (succ a) b c pr = inr (productCancelsRight (succ a) b c (succIsPositive a) pr)
productCancelsLeft' : (a b c : ) (a *N b a *N c) (a zero) || (b c)
productCancelsLeft' zero b c pr = inl refl
productCancelsLeft' (succ a) b c pr = inr (productCancelsLeft (succ a) b c (succIsPositive a) pr)
subtractionPreservesInequality : {a b : } (c : ) a +N c <N b +N c a <N b
subtractionPreservesInequality {a} {b} zero prABC rewrite commutative a 0 | commutative b 0 = prABC
subtractionPreservesInequality {a} {b} (succ c) (le x proof) = le x (canSubtractFromEqualityRight {b = succ c} (transitivity (equalityCommutative (+Associative (succ x) a (succ c))) proof))
cancelInequalityLeft : {a b c : } a *N b <N a *N c b <N c
cancelInequalityLeft {a} {zero} {zero} (le x proof) rewrite (productZeroRight a) = exFalso (naughtE (equalityCommutative proof))
cancelInequalityLeft {a} {zero} {succ c} pr = succIsPositive c
cancelInequalityLeft {a} {succ b} {zero} (le x proof) rewrite (productZeroRight a) = exFalso (naughtE (equalityCommutative proof))
cancelInequalityLeft {a} {succ b} {succ c} pr = succPreservesInequality q'
where
p' : succ b *N a <N succ c *N a
p' = canFlipMultiplicationsInIneq {a} {succ b} {a} {succ c} pr
p'' : b *N a +N a <N succ c *N a
p'' = identityOfIndiscernablesLeft _<N_ p' (commutative a (b *N a))
p''' : b *N a +N a <N c *N a +N a
p''' = identityOfIndiscernablesRight _<N_ p'' (commutative a (c *N a))
p : b *N a <N c *N a
p = subtractionPreservesInequality a p'''
q : a *N b <N a *N c
q = canFlipMultiplicationsInIneq {b} {a} {c} {a} p
q' : b <N c
q' = cancelInequalityLeft {a} {b} {c} q