Files
agdaproofs/Groups/Cyclic/Lemmas.agda
2019-11-16 15:06:57 +00:00

49 lines
2.9 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Numbers.Integers.Integers
open import Numbers.Integers.Addition
open import Sets.FinSet
open import Groups.Homomorphisms.Definition
open import Groups.Groups
open import Groups.Lemmas
open import Groups.Subgroups.Definition
open import Groups.Abelian.Definition
open import Groups.Definition
open import Groups.Cyclic.Definition
open import Groups.Cyclic.DefinitionLemmas
open import Semirings.Definition
module Groups.Cyclic.Lemmas where
elementPowerHom : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A A A} (G : Group S _·_) (x : A) GroupHom Group G (λ i elementPower G x i)
GroupHom.groupHom (elementPowerHom {S = S} G x) {a} {b} = symmetric (elementPowerCollapse G x a b)
where
open Equivalence (Setoid.eq S)
GroupHom.wellDefined (elementPowerHom {S = S} G x) {.y} {y} refl = reflexive
where
open Equivalence (Setoid.eq S)
subgroupOfCyclicIsCyclic : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : B A} {fHom : GroupHom H G f} Subgroup G H fHom CyclicGroup G CyclicGroup H
CyclicGroup.generator (subgroupOfCyclicIsCyclic {f = f} subgrp record { generator = generator ; cyclic = cyclic }) = {!!}
CyclicGroup.cyclic (subgroupOfCyclicIsCyclic {f = f} subgrp record { generator = generator ; cyclic = cyclic }) {a} with cyclic {f a}
CyclicGroup.cyclic (subgroupOfCyclicIsCyclic {f = f} subgrp record { generator = generator ; cyclic = cyclic }) {a} | N , generator^n=fa = N , {!!}
-- Prefer to prove that subgroup of cyclic is cyclic, then deduce this like with abelian groups
{-
cyclicIsGroupProperty : {m n o p : _} {A : Set m} {B : Set o} {S : Setoid {m} {n} A} {T : Setoid {o} {p} B} {_+_ : A → A → A} {_*_ : B → B → B} {G : Group S _+_} {H : Group T _*_} → GroupsIsomorphic G H → CyclicGroup G → CyclicGroup H
CyclicGroup.generator (cyclicIsGroupProperty {H = H} iso G) = GroupsIsomorphic.isomorphism iso (CyclicGroup.generator G)
CyclicGroup.cyclic (cyclicIsGroupProperty {H = H} iso G) {a} with GroupIso.surj (GroupsIsomorphic.proof iso) {a}
CyclicGroup.cyclic (cyclicIsGroupProperty {H = H} iso G) {a} | a' , b with CyclicGroup.cyclic G {a'}
... | pow , prPow = pow , {!!}
-}
-- Proof of abelianness of cyclic groups: a cyclic group is the image of elementPowerHom into Z, so is isomorphic to a subgroup of Z. All subgroups of an abelian group are abelian.
cyclicGroupIsAbelian : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {G : Group S _+_} (cyclic : CyclicGroup G) AbelianGroup G
cyclicGroupIsAbelian cyclic = {!!}