Files
agdaproofs/Numbers/Naturals/Order.agda
2020-04-11 19:46:26 +01:00

216 lines
11 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Semirings.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Semiring
open import Orders.Total.Definition
open import Orders.Partial.Definition
module Numbers.Naturals.Order where
open Semiring Semiring
open import Decidable.Lemmas DecideEquality
private
infix 5 _<NLogical_
_<NLogical_ : Set
zero <NLogical zero = False
zero <NLogical (succ n) = True
(succ n) <NLogical zero = False
(succ n) <NLogical (succ m) = n <NLogical m
infix 5 _<N_
record _<N_ (a : ) (b : ) : Set where
constructor le
field
x :
proof : (succ x) +N a b
infix 5 _<N'_
record _<N'_ (a : ) (b : ) : Set where
constructor le'
field
x :
.proof : (succ x) +N a b
infix 5 _≤N_
_≤N_ : Set
a ≤N b = (a <N b) || (a b)
succIsPositive : (a : ) zero <N succ a
succIsPositive a = le a (applyEquality succ (Semiring.commutative Semiring a 0))
aLessSucc : (a : ) (a <NLogical succ a)
aLessSucc zero = record {}
aLessSucc (succ a) = aLessSucc a
private
succPreservesInequalityLogical : {a b : } (a <NLogical b) (succ a <NLogical succ b)
succPreservesInequalityLogical {a} {b} prAB = prAB
lessTransitiveLogical : {a b c : } (a <NLogical b) (b <NLogical c) (a <NLogical c)
lessTransitiveLogical {a} {zero} {zero} prAB prBC = prAB
lessTransitiveLogical {a} {(succ b)} {zero} prAB ()
lessTransitiveLogical {zero} {zero} {(succ c)} prAB prBC = record {}
lessTransitiveLogical {(succ a)} {zero} {(succ c)} () prBC
lessTransitiveLogical {zero} {(succ b)} {(succ c)} prAB prBC = record {}
lessTransitiveLogical {(succ a)} {(succ b)} {(succ c)} prAB prBC = lessTransitiveLogical {a} {b} {c} prAB prBC
aLessXPlusSuccA : (a x : ) (a <NLogical x +N succ a)
aLessXPlusSuccA a zero = aLessSucc a
aLessXPlusSuccA zero (succ x) = record {}
aLessXPlusSuccA (succ a) (succ x) = lessTransitiveLogical {a} {succ a} {x +N succ (succ a)} (aLessXPlusSuccA a zero) (aLessXPlusSuccA (succ a) x)
leImpliesLogical<N : {a b : } (a <N b) (a <NLogical b)
leImpliesLogical<N {zero} {zero} (le x ())
leImpliesLogical<N {zero} {(succ b)} (le x proof) = record {}
leImpliesLogical<N {(succ a)} {zero} (le x ())
leImpliesLogical<N {(succ a)} {(succ .(succ a))} (le zero refl) = aLessSucc a
leImpliesLogical<N {(succ a)} {(succ .(succ (x +N succ a)))} (le (succ x) refl) = succPreservesInequalityLogical {a} {succ (x +N succ a)} (lessTransitiveLogical {a} {succ a} {succ (x +N succ a)} (aLessSucc a) (aLessXPlusSuccA a x))
logical<NImpliesLe : {a b : } (a <NLogical b) (a <N b)
logical<NImpliesLe {zero} {zero} ()
_<N_.x (logical<NImpliesLe {zero} {succ b} prAB) = b
_<N_.proof (logical<NImpliesLe {zero} {succ b} prAB) = applyEquality succ (sumZeroRight b)
logical<NImpliesLe {(succ a)} {zero} ()
logical<NImpliesLe {(succ a)} {(succ b)} prAB with logical<NImpliesLe {a} prAB
logical<NImpliesLe {(succ a)} {(succ .(succ (x +N a)))} prAB | le x refl = le x (applyEquality succ (transitivity (commutative x _) (applyEquality succ (commutative a _))))
lessTransitive : {a b c : } (a <N b) (b <N c) (a <N c)
lessTransitive {a} {b} {c} prab prbc = logical<NImpliesLe (lessTransitiveLogical {a} {b} {c} (leImpliesLogical<N prab) (leImpliesLogical<N prbc))
lessIrreflexive : {a : } (a <N a) False
lessIrreflexive {zero} pr = leImpliesLogical<N pr
lessIrreflexive {succ a} pr = lessIrreflexive {a} (logical<NImpliesLe {a} {a} (leImpliesLogical<N {succ a} {succ a} pr))
succPreservesInequality : {a b : } (a <N b) (succ a <N succ b)
succPreservesInequality {a} {b} prAB = logical<NImpliesLe (succPreservesInequalityLogical {a} {b} (leImpliesLogical<N prAB))
canRemoveSuccFrom<N : {a b : } (succ a <N succ b) (a <N b)
canRemoveSuccFrom<N {a} {b} (le x proof) rewrite commutative x (succ a) | commutative a x = le x (succInjective proof)
a<SuccA : (a : ) a <N succ a
a<SuccA a = le zero refl
<NWellDefined : {a b : } (p1 : a <N b) (p2 : a <N b) _<N_.x p1 _<N_.x p2
<NWellDefined {a} {b} (le x proof) (le y proof1) = equalityCommutative r
where
q : y +N a x +N a
q = succInjective {y +N a} {x +N a} (transitivity proof1 (equalityCommutative proof))
r : y x
r = canSubtractFromEqualityRight q
canAddToOneSideOfInequality : {a b : } (c : ) a <N b a <N (b +N c)
canAddToOneSideOfInequality {a} {b} c (le x proof) = le (x +N c) (transitivity (applyEquality succ (equalityCommutative (+Associative x c a))) (transitivity (applyEquality (λ i (succ x) +N i) (commutative c a)) (transitivity (applyEquality succ (+Associative x a c)) (applyEquality (_+N c) proof))))
canAddToOneSideOfInequality' : {a b : } (c : ) a <N b a <N (c +N b)
canAddToOneSideOfInequality' {a} {b} c (le x proof) = le (x +N c) ans
where
ans : succ ((x +N c) +N a) c +N b
ans rewrite (equalityCommutative (+Associative x c a)) | commutative c a | (+Associative x a c) = transitivity (applyEquality (_+N c) proof) (commutative b c)
addingIncreases : (a b : ) a <N a +N succ b
addingIncreases zero b = succIsPositive b
addingIncreases (succ a) b = succPreservesInequality (addingIncreases a b)
zeroNeverGreater : {a : } (a <N zero) False
zeroNeverGreater {a} (le x ())
noIntegersBetweenXAndSuccX : {a : } (x : ) (x <N a) (a <N succ x) False
noIntegersBetweenXAndSuccX {zero} x x<a a<sx = zeroNeverGreater x<a
noIntegersBetweenXAndSuccX {succ a} x (le y proof) (le z proof1) with succInjective proof1
... | ah rewrite (equalityCommutative proof) | (succExtracts z (y +N x)) | +Associative (succ z) y x | commutative (succ (z +N y)) x = lessIrreflexive {x} (le (z +N y) (transitivity (commutative _ x) ah))
private
orderIsTotal : (a b : ) ((a <N b) || (b <N a)) || (a b)
orderIsTotal zero zero = inr refl
orderIsTotal zero (succ b) = inl (inl (logical<NImpliesLe (record {})))
orderIsTotal (succ a) zero = inl (inr (logical<NImpliesLe (record {})))
orderIsTotal (succ a) (succ b) with orderIsTotal a b
orderIsTotal (succ a) (succ b) | inl (inl x) = inl (inl (logical<NImpliesLe (leImpliesLogical<N x)))
orderIsTotal (succ a) (succ b) | inl (inr x) = inl (inr (logical<NImpliesLe (leImpliesLogical<N x)))
orderIsTotal (succ a) (succ b) | inr x = inr (applyEquality succ x)
orderIsIrreflexive : {a b : } (a <N b) (b <N a) False
orderIsIrreflexive {zero} {b} prAB (le x ())
orderIsIrreflexive {(succ a)} {zero} (le x ()) prBA
orderIsIrreflexive {(succ a)} {(succ b)} prAB prBA = orderIsIrreflexive {a} {b} (logical<NImpliesLe (leImpliesLogical<N prAB)) (logical<NImpliesLe (leImpliesLogical<N prBA))
orderIsTransitive : {a b c : } (a <N b) (b <N c) (a <N c)
orderIsTransitive {a} {.(succ (x +N a))} {.(succ (y +N succ (x +N a)))} (le x refl) (le y refl) = le (y +N succ x) (applyEquality succ (equalityCommutative (+Associative y (succ x) a)))
TotalOrder : TotalOrder
PartialOrder._<_ (TotalOrder.order TotalOrder) = _<N_
PartialOrder.irreflexive (TotalOrder.order TotalOrder) = lessIrreflexive
PartialOrder.<Transitive (TotalOrder.order TotalOrder) = orderIsTransitive
TotalOrder.totality TotalOrder = orderIsTotal
cannotAddAndEnlarge : (a b : ) a <N succ (a +N b)
cannotAddAndEnlarge a b = le b (applyEquality succ (commutative b a))
cannotAddAndEnlarge' : {a b : } a +N b <N a False
cannotAddAndEnlarge' {a} {zero} pr rewrite sumZeroRight a = lessIrreflexive pr
cannotAddAndEnlarge' {a} {succ b} pr rewrite (succExtracts a b) = lessIrreflexive {a} (lessTransitive {a} {succ (a +N b)} {a} (cannotAddAndEnlarge a b) pr)
cannotAddAndEnlarge'' : {a b : } a +N succ b a False
cannotAddAndEnlarge'' {a} {b} pr = naughtE (equalityCommutative inter)
where
inter : succ b 0
inter rewrite commutative a (succ b) = canSubtractFromEqualityRight pr
naturalsAreNonnegative : (a : ) (a <N zero) False
naturalsAreNonnegative zero ()
naturalsAreNonnegative (succ x) ()
lessRespectsAddition : {a b : } (c : ) (a <N b) ((a +N c) <N (b +N c))
lessRespectsAddition {a} {b} zero prAB rewrite commutative a 0 | commutative b 0 = prAB
lessRespectsAddition {a} {b} (succ c) prAB rewrite commutative a (succ c) | commutative b (succ c) | commutative c a | commutative c b = succPreservesInequality (lessRespectsAddition c prAB)
lessRespectsMultiplicationLeft : (a b c : ) (a <N b) (zero <N c) (c *N a <N c *N b)
lessRespectsMultiplicationLeft zero zero c (le x ()) cPos
lessRespectsMultiplicationLeft zero (succ b) zero prAB (le x ())
lessRespectsMultiplicationLeft zero (succ b) (succ c) prAB cPos = i
where
productNonzeroIsNonzero : {a b : } zero <N a zero <N b zero <N a *N b
productNonzeroIsNonzero {zero} {b} prA prB = prA
productNonzeroIsNonzero {succ a} {zero} prA ()
productNonzeroIsNonzero {succ a} {succ b} prA prB = le (b +N a *N succ b) (applyEquality succ (Semiring.sumZeroRight Semiring _))
j : zero <N succ c *N succ b
j = productNonzeroIsNonzero cPos prAB
i : succ c *N zero <N succ c *N succ b
i = identityOfIndiscernablesLeft _<N_ j (equalityCommutative (productZeroRight c))
lessRespectsMultiplicationLeft (succ a) zero c (le x ()) cPos
lessRespectsMultiplicationLeft (succ a) (succ b) c prAB cPos = m
where
h : c *N a <N c *N b
h = lessRespectsMultiplicationLeft a b c (canRemoveSuccFrom<N prAB) cPos
j : c *N a +N c <N c *N b +N c
j = lessRespectsAddition c h
i : c *N succ a <N c *N b +N c
i = identityOfIndiscernablesLeft _<N_ j (equalityCommutative (transitivity (multiplicationNIsCommutative c _) (transitivity (applyEquality (c +N_) (multiplicationNIsCommutative a _)) (commutative c _))))
m : c *N succ a <N c *N succ b
m = identityOfIndiscernablesRight _<N_ i (equalityCommutative (transitivity (multiplicationNIsCommutative c _) (transitivity (commutative c _) (applyEquality (_+N c) (multiplicationNIsCommutative b _)))))
canFlipMultiplicationsInIneq : {a b c d : } (a *N b <N c *N d) b *N a <N d *N c
canFlipMultiplicationsInIneq {a} {b} {c} {d} pr = identityOfIndiscernablesRight _<N_ (identityOfIndiscernablesLeft _<N_ pr (multiplicationNIsCommutative a b)) (multiplicationNIsCommutative c d)
lessRespectsMultiplication : (a b c : ) (a <N b) (zero <N c) (a *N c <N b *N c)
lessRespectsMultiplication a b c prAB cPos = canFlipMultiplicationsInIneq {c} {a} {c} {b} (lessRespectsMultiplicationLeft a b c prAB cPos)
squash<N : {a b : } .(a <N b) a <N b
squash<N {a} {b} a<b with orderIsTotal a b
... | inl (inl x) = x
... | inl (inr x) = exFalso (lessIrreflexive (orderIsTransitive x a<b))
squash<N {a} {b} a<b | inr refl = exFalso (lessIrreflexive a<b)
<NTo<N' : {a b : } a <N b a <N' b
<NTo<N' (le x proof) = le' x proof
<N'To<N : {a b : } a <N' b a <N b
<N'To<N {a} {b} (le' x proof) = le x (squash proof)
<N'Refl : {a b : } (p1 p2 : a <N' b) p1 p2
<N'Refl p1 p2 with <NWellDefined (<N'To<N p1) (<N'To<N p2)
... | refl = refl