Files
agdaproofs/Groups/Vector.agda
2020-03-28 21:34:14 +00:00

82 lines
3.9 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Vectors
open import Numbers.Naturals.Semiring
open import Sets.EquivalenceRelations
module Groups.Vector {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A A A} (G : Group S _+_) where
open Setoid S
open Equivalence eq
open Group G
vecEquiv : {n : } Vec A n Vec A n Set b
vecEquiv {zero} [] [] = True'
vecEquiv {succ n} (x ,- v1) (y ,- v2) = (x y) && vecEquiv v1 v2
private
vecEquivRefl : {n : } (x : Vec A n) vecEquiv x x
vecEquivRefl [] = record {}
vecEquivRefl (x ,- xs) = reflexive ,, vecEquivRefl xs
vecEquivSymm : {n : } (x y : Vec A n) vecEquiv x y vecEquiv y x
vecEquivSymm [] [] record {} = record {}
vecEquivSymm (x ,- xs) (y ,- ys) (fst ,, snd) = symmetric fst ,, vecEquivSymm _ _ snd
vecEquivTrans : {n : } (x y z : Vec A n) vecEquiv x y vecEquiv y z vecEquiv x z
vecEquivTrans [] [] [] x=y y=z = record {}
vecEquivTrans (x ,- xs) (y ,- ys) (z ,- zs) (fst1 ,, snd1) (fst2 ,, snd2) = transitive fst1 fst2 ,, vecEquivTrans xs ys zs snd1 snd2
vectorSetoid : (n : ) Setoid (Vec A n)
Setoid.__ (vectorSetoid n) = vecEquiv {n}
Equivalence.reflexive (Setoid.eq (vectorSetoid n)) {x} = vecEquivRefl x
Equivalence.symmetric (Setoid.eq (vectorSetoid n)) {x} {y} = vecEquivSymm x y
Equivalence.transitive (Setoid.eq (vectorSetoid n)) {x} {y} {z} = vecEquivTrans x y z
vectorAdd : {n : } Vec A n Vec A n Vec A n
vectorAdd [] [] = []
vectorAdd (x ,- v1) (y ,- v2) = (x + y) ,- (vectorAdd v1 v2)
private
addWellDefined : {n : } (m k x y : Vec A n) Setoid.__ (vectorSetoid n) m x Setoid.__ (vectorSetoid n) k y Setoid.__ (vectorSetoid n) (vectorAdd m k) (vectorAdd x y)
addWellDefined [] [] [] [] m=x k=y = record {}
addWellDefined (m ,- ms) (k ,- ks) (x ,- xs) (y ,- ys) (m=x ,, ms=xs) (k=y ,, ks=ys) = +WellDefined m=x k=y ,, addWellDefined ms ks xs ys ms=xs ks=ys
addAssoc : {n : } (x y z : Vec A n) Setoid.__ (vectorSetoid n) (vectorAdd x (vectorAdd y z)) (vectorAdd (vectorAdd x y) z)
addAssoc [] [] [] = record {}
addAssoc (x ,- xs) (y ,- ys) (z ,- zs) = +Associative ,, addAssoc xs ys zs
vecIdentRight : {n : } (a : Vec A n) Setoid.__ (vectorSetoid n) (vectorAdd a (vecPure 0G)) a
vecIdentRight [] = record {}
vecIdentRight (x ,- a) = identRight ,, vecIdentRight a
vecIdentLeft : {n : } (a : Vec A n) Setoid.__ (vectorSetoid n) (vectorAdd (vecPure 0G) a) a
vecIdentLeft [] = record {}
vecIdentLeft (x ,- a) = identLeft ,, vecIdentLeft a
vecInvLeft : {n : } (a : Vec A n) Setoid.__ (vectorSetoid n) (vectorAdd (vecMap inverse a) a) (vecPure 0G)
vecInvLeft [] = record {}
vecInvLeft (x ,- a) = invLeft ,, vecInvLeft a
vecInvRight : {n : } (a : Vec A n) Setoid.__ (vectorSetoid n) (vectorAdd a (vecMap inverse a)) (vecPure 0G)
vecInvRight [] = record {}
vecInvRight (x ,- a) = invRight ,, vecInvRight a
vectorGroup : {n : } Group (vectorSetoid n) (vectorAdd {n})
Group.+WellDefined vectorGroup {m} {n} {x} {y} = addWellDefined m n x y
Group.0G vectorGroup = vecPure 0G
Group.inverse vectorGroup x = vecMap inverse x
Group.+Associative vectorGroup {x} {y} {z} = addAssoc x y z
Group.identRight vectorGroup {a} = vecIdentRight a
Group.identLeft vectorGroup {a} = vecIdentLeft a
Group.invLeft vectorGroup {a} = vecInvLeft a
Group.invRight vectorGroup {a} = vecInvRight a
abelianVectorGroup : {n : } AbelianGroup G AbelianGroup (vectorGroup {n})
AbelianGroup.commutative (abelianVectorGroup grp) {[]} {[]} = record {}
AbelianGroup.commutative (abelianVectorGroup grp) {x ,- xs} {y ,- ys} = AbelianGroup.commutative grp ,, AbelianGroup.commutative (abelianVectorGroup grp) {xs} {ys}