Files
agdaproofs/Groups/Homomorphisms/Lemmas2.agda
2020-04-18 17:47:27 +01:00

52 lines
3.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Naturals
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Homomorphisms.Lemmas2 {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ : A A A} (G : Group S _+A_) where
imageGroup : {c d : _} {B : Set c} {T : Setoid {c} {d} B} {_+B_ : B B B} (f : A B) SetoidSurjection S T f ({x y : A} Setoid.__ T (f (x +A y)) ((f x) +B (f y))) ({x y m n : B} Setoid.__ T x m Setoid.__ T y n Setoid.__ T (x +B y) (m +B n)) Group T _+B_
Group.+WellDefined (imageGroup f surj respects+ wd) {m} {n} {x} {y} = wd
Group.0G (imageGroup f surj respects+ wd) = f (Group.0G G)
Group.inverse (imageGroup f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) b with surjective {b}
Group.inverse (imageGroup f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) b | a , fa=b = f (Group.inverse G a)
Group.+Associative (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {a} {b} {c} with surjective {a}
... | x , fx=a with surjective {b}
... | y , fy=b with surjective {c}
... | z , fz=c = transitive (wd (symmetric fx=a) (transitive (wd (symmetric fy=b) (symmetric fz=c)) (symmetric respects+))) (transitive (transitive (symmetric respects+) (transitive (wellDefined (Group.+Associative G)) respects+)) (wd (transitive respects+ (wd fx=a fy=b)) fz=c))
where
open Setoid T
open Equivalence eq
Group.identRight (imageGroup {T = T} f record { wellDefined = wd ; surjective = surjective } respects+ bWd) {b} with surjective {b}
... | a , fa=b = transitive (bWd (symmetric fa=b) reflexive) (transitive (symmetric respects+) (transitive (wd (Group.identRight G)) fa=b))
where
open Setoid T
open Equivalence eq
Group.identLeft (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} with surjective {b}
... | a , fa=b = transitive (wd reflexive (symmetric fa=b)) (transitive (symmetric respects+) (transitive (wellDefined (Group.identLeft G)) fa=b))
where
open Setoid T
open Equivalence eq
Group.invLeft (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} with surjective {b}
Group.invLeft (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} | a , fa=b = transitive (wd reflexive (symmetric fa=b)) (transitive (symmetric respects+) (wellDefined (Group.invLeft G)))
where
open Setoid T
open Equivalence eq
Group.invRight (imageGroup f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} with surjective {b}
Group.invRight (imageGroup {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ wd) {b} | a , fa=b = transitive (wd (symmetric fa=b) reflexive) (transitive (symmetric respects+) (wellDefined (Group.invRight G)))
where
open Setoid T
open Equivalence eq
homToImageGroup : {c d : _} {B : Set c} {T : Setoid {c} {d} B} {_+B_ : B B B} (f : A B) (surj : SetoidSurjection S T f) (respects+ : {x y : A} Setoid.__ T (f (x +A y)) ((f x) +B (f y))) (wd : {x y m n : B} Setoid.__ T x m Setoid.__ T y n Setoid.__ T (x +B y) (m +B n)) GroupHom G (imageGroup f surj respects+ wd) f
GroupHom.groupHom (homToImageGroup f surj respects+ wd) = respects+
GroupHom.wellDefined (homToImageGroup f surj respects+ wd) = SetoidSurjection.wellDefined surj