Files
agdaproofs/Groups/Homomorphisms/Kernel.agda
2020-01-05 15:06:35 +00:00

32 lines
1.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Subgroups.Definition
open import Groups.Subgroups.Normal.Definition
open import Groups.Lemmas
module Groups.Homomorphisms.Kernel {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A A A} {_+H_ : B B B} {G : Group S _+G_} {H : Group T _+H_} {f : A B} (fHom : GroupHom G H f) where
open Setoid T
open Equivalence eq
groupKernelPred : A Set d
groupKernelPred a = Setoid.__ T (f a) (Group.0G H)
groupKernelPredWd : {x y : A} (Setoid.__ S x y) groupKernelPred x groupKernelPred y
groupKernelPredWd x=y fx=0 = transitive (GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) x=y)) fx=0
groupKernelIsSubgroup : Subgroup G groupKernelPred
Subgroup.closedUnderPlus groupKernelIsSubgroup fg=0 fh=0 = transitive (transitive (GroupHom.groupHom fHom) (Group.+WellDefined H fg=0 fh=0)) (Group.identLeft H)
Subgroup.containsIdentity groupKernelIsSubgroup = imageOfIdentityIsIdentity fHom
Subgroup.closedUnderInverse groupKernelIsSubgroup fg=0 = transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H fg=0) (invIdent H))
Subgroup.isSubset groupKernelIsSubgroup = groupKernelPredWd
groupKernelIsNormalSubgroup : normalSubgroup G groupKernelIsSubgroup
groupKernelIsNormalSubgroup {g} fk=0 = transitive (transitive (transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H reflexive (transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H fk=0 reflexive) (Group.identLeft H)))) (symmetric (GroupHom.groupHom fHom)))) (GroupHom.wellDefined fHom (Group.invRight G {g}))) (imageOfIdentityIsIdentity fHom)