Files
agdaproofs/Groups/Homomorphisms/Image.agda
2020-01-05 15:06:35 +00:00

37 lines
1.5 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import Setoids.Subset
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Homomorphisms.Image {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) where
imageGroupPred : B Set (a d)
imageGroupPred b = Sg A (λ a Setoid.__ T (f a) b)
imageGroupSubset : subset T imageGroupPred
imageGroupSubset {x} {y} x=y (a , fa=x) = a , transitive fa=x x=y
where
open Setoid T
open Equivalence eq
imageGroupSubgroup : Subgroup H imageGroupPred
Subgroup.isSubset imageGroupSubgroup = imageGroupSubset
Subgroup.closedUnderPlus imageGroupSubgroup {x} {y} (a , fa=x) (b , fb=y) = (a +A b) , transitive (GroupHom.groupHom fHom) (Group.+WellDefined H fa=x fb=y)
where
open Setoid T
open Equivalence eq
Subgroup.containsIdentity imageGroupSubgroup = Group.0G G , imageOfIdentityIsIdentity fHom
Subgroup.closedUnderInverse imageGroupSubgroup {x} (a , fa=x) = Group.inverse G a , transitive (homRespectsInverse fHom) (inverseWellDefined H fa=x)
where
open Setoid T
open Equivalence eq