Files
agdaproofs/Groups/Homomorphisms/Examples.agda
2020-04-18 17:47:27 +01:00

14 lines
513 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Functions.Definition
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
module Groups.Homomorphisms.Examples where
identityHom : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ : A A A} (G : Group S _+A_) GroupHom G G id
GroupHom.groupHom (identityHom {S = S} G) = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (identityHom G) = id