Files
agdaproofs/Numbers/Naturals/Order/WellFounded.agda
2019-12-29 12:11:21 +00:00

37 lines
1.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Orders.WellFounded.Definition
open import Functions
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Semirings.Definition
open import Orders.Total.Definition
module Numbers.Naturals.Order.WellFounded where
open Semiring Semiring
<NWellfounded : WellFounded _<N_
<NWellfounded = λ x access (go x)
where
lemma : {a b c : } a <N b b <N succ c a <N c
lemma {a} {b} {c} (le y succYAeqB) (le z zbEqC') = le (y +N z) p
where
zbEqC : z +N b c
zSuccYAEqC : z +N (succ y +N a) c
zSuccYAEqC' : z +N (succ (y +N a)) c
zSuccYAEqC'' : succ (z +N (y +N a)) c
zSuccYAEqC''' : succ ((z +N y) +N a) c
p : succ ((y +N z) +N a) c
p = identityOfIndiscernablesLeft _≡_ zSuccYAEqC''' (applyEquality (λ n succ (n +N a)) (commutative z y))
zSuccYAEqC''' = identityOfIndiscernablesLeft _≡_ zSuccYAEqC'' (applyEquality succ (+Associative z y a))
zSuccYAEqC'' = identityOfIndiscernablesLeft _≡_ zSuccYAEqC' (succExtracts z (y +N a))
zSuccYAEqC' = identityOfIndiscernablesLeft _≡_ zSuccYAEqC (applyEquality (λ r z +N r) refl)
zbEqC = succInjective zbEqC'
zSuccYAEqC = identityOfIndiscernablesLeft _≡_ zbEqC (applyEquality (λ r z +N r) (equalityCommutative succYAeqB))
go : n m m <N n Accessible _<N_ m
go zero m (le x ())
go (succ n) zero mLessN = access (λ y ())
go (succ n) (succ m) smLessSN = access (λ o (oLessSM : o <N succ m) go n o (lemma oLessSM smLessSN))