Files
agdaproofs/Groups/Homomorphisms/Image.agda
2019-11-20 21:20:03 +00:00

46 lines
1.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Groups
open import Groups.Definition
open import Orders
open import Numbers.Integers.Integers
open import Setoids.Setoids
open import Setoids.Subset
open import LogicalFormulae
open import Sets.FinSet
open import Functions
open import Sets.EquivalenceRelations
open import Numbers.Naturals.Naturals
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Abelian.Definition
open import Groups.QuotientGroup.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Homomorphisms.Image {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (fHom : GroupHom G H f) where
imageGroupPred : B Set (a d)
imageGroupPred b = Sg A (λ a Setoid.__ T (f a) b)
imageGroupSubset : subset T imageGroupPred
imageGroupSubset {x} {y} x=y (a , fa=x) = a , transitive fa=x x=y
where
open Setoid T
open Equivalence eq
imageGroupSubgroup : subgroup H imageGroupPred
_&&_.fst imageGroupSubgroup = imageGroupSubset
_&_&_.one (_&&_.snd imageGroupSubgroup) {x} {y} (a , fa=x) (b , fb=y) = (a +A b) , transitive (GroupHom.groupHom fHom) (Group.+WellDefined H fa=x fb=y)
where
open Setoid T
open Equivalence eq
_&_&_.two (_&&_.snd imageGroupSubgroup) = Group.0G G , imageOfIdentityIsIdentity fHom
_&_&_.three (_&&_.snd imageGroupSubgroup) {x} (a , fa=x) = Group.inverse G a , transitive (homRespectsInverse fHom) (inverseWellDefined H fa=x)
where
open Setoid T
open Equivalence eq