mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 06:38:39 +00:00
34 lines
1014 B
Agda
34 lines
1014 B
Agda
{-# OPTIONS --safe --warning=error #-}
|
||
|
||
open import LogicalFormulae
|
||
open import Groups
|
||
open import Rings
|
||
open import Setoids
|
||
open import Orders
|
||
open import IntegralDomains
|
||
open import Functions
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
|
||
module Fields where
|
||
record Field {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} (R : Ring S _+_ _*_) : Set (lsuc m ⊔ n) where
|
||
open Ring R
|
||
open Group additiveGroup
|
||
open Setoid S
|
||
field
|
||
allInvertible : (a : A) → ((a ∼ Group.identity (Ring.additiveGroup R)) → False) → Sg A (λ t → t * a ∼ 1R)
|
||
nontrivial : (0R ∼ 1R) → False
|
||
|
||
{-
|
||
record OrderedField {n} {A : Set n} {R : Ring A} (F : Field R) : Set (lsuc n) where
|
||
open Field F
|
||
field
|
||
ord : TotalOrder A
|
||
open TotalOrder ord
|
||
open Ring R
|
||
field
|
||
productPos : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b))
|
||
orderRespectsAddition : {a b c : A} → (a < b) → (a + c) < (b + c)
|
||
|
||
-}
|