Files
agdaproofs/Rings/Isomorphisms/Definition.agda
2020-01-05 15:06:35 +00:00

20 lines
688 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Isomorphisms.Definition {a b c d : _} {A : Set a} {S : Setoid {a} {b} A} {_+1_ _*1_ : A A A} (R1 : Ring S _+1_ _*1_) {B : Set c} {T : Setoid {c} {d} B} {_+2_ _*2_ : B B B} (R2 : Ring T _+2_ _*2_) where
record RingIso (f : A B) : Set (a b c d) where
field
ringHom : RingHom R1 R2 f
bijective : SetoidBijection S T f
record RingsIsomorphic : Set (a b c d) where
field
f : A B
iso : RingIso f