mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 14:48:42 +00:00
132 lines
9.0 KiB
Agda
132 lines
9.0 KiB
Agda
{-# OPTIONS --safe --warning=error #-}
|
||
|
||
open import Functions
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
open import LogicalFormulae
|
||
|
||
module Setoids.Setoids where
|
||
record Setoid {a} {b} (A : Set a) : Set (a ⊔ lsuc b) where
|
||
infix 1 _∼_
|
||
field
|
||
_∼_ : A → A → Set b
|
||
eq : Equivalence _∼_
|
||
|
||
open Equivalence eq
|
||
open Reflexive reflexiveEq
|
||
open Transitive transitiveEq
|
||
open Symmetric symmetricEq
|
||
|
||
~refl : {r : A} → (r ∼ r)
|
||
~refl {r} = reflexive {r}
|
||
|
||
record Quotient {a} {b} {c} {A : Set a} {image : Set b} (S : Setoid {a} {c} A) : Set (a ⊔ b ⊔ c) where
|
||
open Setoid S
|
||
field
|
||
map : A → image
|
||
mapWellDefined : {x y : A} → x ∼ y → map x ≡ map y
|
||
mapSurjective : Surjection map
|
||
mapInjective : {x y : A} → map x ≡ map y → x ∼ y
|
||
|
||
record SetoidToSet {a b c : _} {A : Set a} (S : Setoid {a} {c} A) (quotient : Set b) : Set (a ⊔ b ⊔ c) where
|
||
open Setoid S
|
||
field
|
||
project : A → quotient
|
||
wellDefined : (x y : A) → (x ∼ y) → project x ≡ project y
|
||
surj : Surjection project
|
||
inj : (x y : A) → project x ≡ project y → x ∼ y
|
||
|
||
open Setoid
|
||
|
||
reflSetoid : {a : _} (A : Set a) → Setoid A
|
||
_∼_ (reflSetoid A) a b = a ≡ b
|
||
Reflexive.reflexive (Equivalence.reflexiveEq (eq (reflSetoid A))) = refl
|
||
Symmetric.symmetric (Equivalence.symmetricEq (eq (reflSetoid A))) {b} {.b} refl = refl
|
||
Transitive.transitive (Equivalence.transitiveEq (eq (reflSetoid A))) {b} {.b} {.b} refl refl = refl
|
||
|
||
directSumSetoid : {m n o p : _} → {A : Set m} {B : Set n} → (r : Setoid {m} {o} A) → (s : Setoid {n} {p} B) → Setoid (A && B)
|
||
_∼_ (directSumSetoid r s) (a ,, b) (c ,, d) = (Setoid._∼_ r a c) && (Setoid._∼_ s b d)
|
||
Reflexive.reflexive (Equivalence.reflexiveEq (eq (directSumSetoid r s))) {(a ,, b)} = Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq r)) ,, Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq s))
|
||
Symmetric.symmetric (Equivalence.symmetricEq (eq (directSumSetoid r s))) {(a ,, b)} {(c ,, d)} (fst ,, snd) = Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq r)) fst ,, Symmetric.symmetric (Equivalence.symmetricEq (Setoid.eq s)) snd
|
||
Transitive.transitive (Equivalence.transitiveEq (eq (directSumSetoid r s))) {a ,, b} {c ,, d} {e ,, f} (fst1 ,, snd1) (fst2 ,, snd2) = Transitive.transitive (Equivalence.transitiveEq (Setoid.eq r)) fst1 fst2 ,, Transitive.transitive (Equivalence.transitiveEq (Setoid.eq s)) snd1 snd2
|
||
|
||
record SetoidInjection {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
|
||
open Setoid S renaming (_∼_ to _∼A_)
|
||
open Setoid T renaming (_∼_ to _∼B_)
|
||
field
|
||
wellDefined : {x y : A} → x ∼A y → (f x) ∼B (f y)
|
||
injective : {x y : A} → (f x) ∼B (f y) → x ∼A y
|
||
|
||
record SetoidSurjection {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
|
||
open Setoid S renaming (_∼_ to _∼A_)
|
||
open Setoid T renaming (_∼_ to _∼B_)
|
||
field
|
||
wellDefined : {x y : A} → x ∼A y → (f x) ∼B (f y)
|
||
surjective : {x : B} → Sg A (λ a → f a ∼B x)
|
||
|
||
record SetoidBijection {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
|
||
field
|
||
inj : SetoidInjection S T f
|
||
surj : SetoidSurjection S T f
|
||
|
||
record SetoidsBiject {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) : Set (a ⊔ b ⊔ c ⊔ d) where
|
||
field
|
||
bij : A → B
|
||
bijIsBijective : SetoidBijection S T bij
|
||
|
||
setoidInjComp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {g : A → B} {h : B → C} → (gB : SetoidInjection S T g) (hB : SetoidInjection T U h) → SetoidInjection S U (h ∘ g)
|
||
SetoidInjection.wellDefined (setoidInjComp gI hI) x~y = SetoidInjection.wellDefined hI (SetoidInjection.wellDefined gI x~y)
|
||
SetoidInjection.injective (setoidInjComp gI hI) hgx~hgy = SetoidInjection.injective gI (SetoidInjection.injective hI hgx~hgy)
|
||
|
||
setoidSurjComp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {g : A → B} {h : B → C} → (gB : SetoidSurjection S T g) (hB : SetoidSurjection T U h) → SetoidSurjection S U (h ∘ g)
|
||
SetoidSurjection.wellDefined (setoidSurjComp gI hI) x~y = SetoidSurjection.wellDefined hI (SetoidSurjection.wellDefined gI x~y)
|
||
SetoidSurjection.surjective (setoidSurjComp gI hI) {x} with SetoidSurjection.surjective hI {x}
|
||
SetoidSurjection.surjective (setoidSurjComp gI hI) {x} | a , prA with SetoidSurjection.surjective gI {a}
|
||
SetoidSurjection.surjective (setoidSurjComp {U = U} gI hI) {x} | a , prA | b , prB = b , transitive (SetoidSurjection.wellDefined hI prB) prA
|
||
where
|
||
open Setoid U
|
||
open Transitive (Equivalence.transitiveEq (Setoid.eq U))
|
||
|
||
setoidBijComp : {a b c d e f : _} {A : Set a} {B : Set b} {C : Set c} {S : Setoid {a} {d} A} {T : Setoid {b} {e} B} {U : Setoid {c} {f} C} {g : A → B} {h : B → C} → (gB : SetoidBijection S T g) (hB : SetoidBijection T U h) → SetoidBijection S U (h ∘ g)
|
||
SetoidBijection.inj (setoidBijComp gB hB) = setoidInjComp (SetoidBijection.inj gB) (SetoidBijection.inj hB)
|
||
SetoidBijection.surj (setoidBijComp gB hB) = setoidSurjComp (SetoidBijection.surj gB) (SetoidBijection.surj hB)
|
||
|
||
setoidIdIsBijective : {a b : _} {A : Set a} {S : Setoid {a} {b} A} → SetoidBijection S S (λ i → i)
|
||
SetoidInjection.wellDefined (SetoidBijection.inj (setoidIdIsBijective {A = A})) = id
|
||
SetoidInjection.injective (SetoidBijection.inj (setoidIdIsBijective {A = A})) = id
|
||
SetoidSurjection.wellDefined (SetoidBijection.surj (setoidIdIsBijective {A = A})) = id
|
||
SetoidSurjection.surjective (SetoidBijection.surj (setoidIdIsBijective {S = S})) {x} = x , Reflexive.reflexive (Equivalence.reflexiveEq (Setoid.eq S))
|
||
|
||
record SetoidInvertible {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) : Set (a ⊔ b ⊔ c ⊔ d) where
|
||
field
|
||
fWellDefined : {x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y)
|
||
inverse : B → A
|
||
inverseWellDefined : {x y : B} → Setoid._∼_ T x y → Setoid._∼_ S (inverse x) (inverse y)
|
||
isLeft : (b : B) → Setoid._∼_ T (f (inverse b)) b
|
||
isRight : (a : A) → Setoid._∼_ S (inverse (f a)) a
|
||
|
||
setoidBijectiveImpliesInvertible : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f : A → B} (bij : SetoidBijection S T f) → SetoidInvertible S T f
|
||
SetoidInvertible.fWellDefined (setoidBijectiveImpliesInvertible bij) x~y = SetoidInjection.wellDefined (SetoidBijection.inj bij) x~y
|
||
SetoidInvertible.inverse (setoidBijectiveImpliesInvertible bij) x with SetoidSurjection.surjective (SetoidBijection.surj bij) {x}
|
||
SetoidInvertible.inverse (setoidBijectiveImpliesInvertible bij) x | a , b = a
|
||
SetoidInvertible.inverseWellDefined (setoidBijectiveImpliesInvertible bij) {x} {y} x~y with SetoidSurjection.surjective (SetoidBijection.surj bij) {x}
|
||
SetoidInvertible.inverseWellDefined (setoidBijectiveImpliesInvertible {T = T} bij) {x} {y} x~y | a , prA with SetoidSurjection.surjective (SetoidBijection.surj bij) {y}
|
||
... | b , prB = SetoidInjection.injective (SetoidBijection.inj bij) (transitive prA (transitive x~y (symmetric prB)))
|
||
where
|
||
open Setoid T
|
||
open Transitive (Equivalence.transitiveEq (Setoid.eq T))
|
||
open Symmetric (Equivalence.symmetricEq (Setoid.eq T))
|
||
SetoidInvertible.isLeft (setoidBijectiveImpliesInvertible bij) b with SetoidSurjection.surjective (SetoidBijection.surj bij) {b}
|
||
... | a , prA = prA
|
||
SetoidInvertible.isRight (setoidBijectiveImpliesInvertible {f = f} bij) b with SetoidSurjection.surjective (SetoidBijection.surj bij) {f b}
|
||
... | fb , prFb = SetoidInjection.injective (SetoidBijection.inj bij) prFb
|
||
|
||
setoidInvertibleImpliesBijective : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f : A → B} (inv : SetoidInvertible S T f) → SetoidBijection S T f
|
||
SetoidInjection.wellDefined (SetoidBijection.inj (setoidInvertibleImpliesBijective inv)) x~y = SetoidInvertible.fWellDefined inv x~y
|
||
SetoidInjection.injective (SetoidBijection.inj (setoidInvertibleImpliesBijective {S = S} {f = f} inv)) {x} {y} pr = transitive (symmetric (SetoidInvertible.isRight inv x)) (transitive (SetoidInvertible.inverseWellDefined inv pr) (SetoidInvertible.isRight inv y))
|
||
where
|
||
open Setoid S
|
||
open Transitive (Equivalence.transitiveEq (Setoid.eq S))
|
||
open Symmetric (Equivalence.symmetricEq (Setoid.eq S))
|
||
SetoidSurjection.wellDefined (SetoidBijection.surj (setoidInvertibleImpliesBijective inv)) x~y = SetoidInvertible.fWellDefined inv x~y
|
||
SetoidSurjection.surjective (SetoidBijection.surj (setoidInvertibleImpliesBijective inv)) {x} = SetoidInvertible.inverse inv x , SetoidInvertible.isLeft inv x
|