Files
agdaproofs/Rings/UniqueFactorisationDomains/Definition.agda
2019-12-23 10:26:20 +00:00

28 lines
1.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Rings.IntegralDomains.Definition
open import Lists.Lists
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.UniqueFactorisationDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Units.Definition R
open import Rings.Irreducibles.Definition intDom
open Ring R
open Setoid S
record Factorisation {r : A} (nonzero : (r 0R) False) (nonunit : (Unit r) False) : Set (a b) where
field
factorise : List A
factoriseIsFactorisation : fold (_*_) 1R factorise r
factoriseIsIrreducibles : allTrue Irreducible factorise
--record UFD : Set (a ⊔ b) where
-- field
-- factorisation : {r : A} → (nonzero : (r 0R) → False) → (nonunit : (Unit r) → False) → Factorisation nonzero nonunit
-- uniqueFactorisation : {r : A} → (nonzero : (r 0R) → False) → (nonunit : (Unit r) → False) → (f1 f2 : Factorisation nonzero nonunit) → {!Sg !}