Files
agdaproofs/Numbers/Reals.agda
2019-01-18 13:00:15 +00:00

40 lines
1.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import Fields.Fields
open import Functions
open import Orders
open import LogicalFormulae
open import Numbers.Rationals
open import Numbers.RationalsLemmas
open import Numbers.Naturals
open import Setoids.Setoids
open import Setoids.Orders
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Numbers.Reals where
record : Set where
field
f :
converges : {ε : } Sg (λ x {y : } x <N y (absQ ((f x) -Q (f y))) <Q ε)
_+R_ :
.f (record { f = a ; converges = conA } +R record { f = b ; converges = conB }) n = (a n) +Q (b n)
.converges (record { f = a ; converges = conA } +R record { f = b ; converges = conB }) {e} = {!absQ (a x +Q b x)!}
negateR :
.f (negateR record { f = f ; converges = converges }) n = negateQ (f n)
.converges (negateR record { f = f ; converges = converges }) {e} with converges {e}
... | n , pr = n , λ {y} x<y SetoidPartialOrder.wellDefined PartialOrder {absQ ((f n) -Q (f y))} {absQ ((negateQ (f n)) -Q (negateQ (f y)))} {e} {e} {!!} {!reflQ e!} (pr {y} x<y)
_-R_ :
a -R b = a +R (negateR b)
_*R_ :
.f (record { f = a ; converges = conA } *R record { f = b ; converges = conB }) n = (a n) *Q (b n)
.converges (record { f = a ; converges = conA } *R record { f = b ; converges = conB}) {e} = {!!}
realsSetoid : Setoid
(realsSetoid Setoid. record { f = a ; converges = convA }) record { f = b ; converges = convB } = {!!}
Setoid.eq realsSetoid = {!!}