Files
agdaproofs/Fields/Orders/Total/Definition.agda
2020-04-16 13:41:51 +01:00

20 lines
743 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Functions
open import Fields.Fields
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Total.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) where
open Ring R
record TotallyOrderedField {p} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (pRing : PartiallyOrderedRing R pOrder) : Set (lsuc (m n p)) where
field
oRing : TotallyOrderedRing pRing