Files
agdaproofs/Groups/Lemmas.agda
2019-10-13 09:31:54 +01:00

40 lines
1.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Groups.Groups
open import Groups.Definition
open import Sets.EquivalenceRelations
module Groups.Lemmas where
invInv : {a b : _} {A : Set a} {_·_ : A A A} {S : Setoid {a} {b} A} (G : Group S _·_) {x : A} Setoid.__ S (Group.inverse G (Group.inverse G x)) x
invInv {S = S} G {x} = symmetric (transferToRight' G invRight)
where
open Setoid S
open Group G
open Equivalence eq
invIdent : {a b : _} {A : Set a} {_·_ : A A A} {S : Setoid {a} {b} A} (G : Group S _·_) Setoid.__ S (Group.inverse G (Group.0G G)) (Group.0G G)
invIdent {S = S} G = symmetric (transferToRight' G (Group.identLeft G))
where
open Setoid S
open Group G
open Equivalence eq
swapInv : {a b : _} {A : Set a} {_+_ : A A A} {S : Setoid {a} {b} A} (G : Group S _+_) {x y : A} Setoid.__ S (Group.inverse G x) y Setoid.__ S x (Group.inverse G y)
swapInv {S = S} G {x} {y} -x=y = transitive (symmetric (invInv G)) (inverseWellDefined G -x=y)
where
open Setoid S
open Group G
open Equivalence eq
identityIsUnique : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_·_ : A A A} (G : Group S _·_) (e : A) ((b : A) (Setoid.__ S (b · e) b)) (Setoid.__ S e (Group.0G G))
identityIsUnique {S = S} {_·_} g thing fb = transitive (symmetric identLeft) (fb 0G)
where
open Group g renaming (inverse to _^-1)
open Setoid S
open Equivalence eq