Files
agdaproofs/Categories/Category.agda
2019-12-07 13:00:18 +00:00

78 lines
5.3 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Vectors
open import Semirings.Definition
open import Categories.Definition
open import Orders
open import Categories.Functor.Definition
open import Categories.Examples
module Categories.Category where
postulate
extensionality : {a b : _} {S : Set a} {T : S Set b} {f g : (x : S) T x} ((x : S) f x g x) f g
≡Unique : {a : _} {X : Set a} {a b : X} (p1 p2 : a b) (p1 p2)
≡Unique refl refl = refl
NatPreorder : Category {lzero} {lzero}
NatPreorder = record { objects = ; arrows = λ m n m ≤N n ; id = λ x inr refl ; _∘_ = λ f g leqTransitive g f ; rightId = λ x<y leqUnique (leqTransitive x<y (inr refl)) x<y ; leftId = λ x<y leqUnique (leqTransitive (inr refl) x<y) x<y ; associative = λ z<=w y<=z x<=y leqUnique (leqTransitive (leqTransitive x<=y y<=z) z<=w) (leqTransitive x<=y (leqTransitive y<=z z<=w)) }
where
leqTransitive : {a b c : } (a ≤N b) (b ≤N c) (a ≤N c)
leqTransitive (inl a<b) (inl b<c) = inl (TotalOrder.<Transitive TotalOrder a<b b<c)
leqTransitive (inl a<b) (inr b=c) rewrite b=c = inl a<b
leqTransitive (inr a=b) (inl b<c) rewrite a=b = inl b<c
leqTransitive (inr a=b) (inr b=c) rewrite a=b | b=c = inr refl
<Nunique : {a b : } (p1 p2 : a <N b) p1 p2
<Nunique {a} {b} (le a-b pr1) (le a-b2 pr2) = go a-b pr1 a-b2 pr2 p'
where
p : a-b2 +N a a-b +N a
p rewrite equalityCommutative pr1 = succInjective pr2
p' : a-b2 a-b
p' = canSubtractFromEqualityRight p
go : (a-b : ) (pr1 : succ (a-b +N a) b) (a-b2 : ) (pr2 : succ (a-b2 +N a) b) (p : a-b2 a-b) (le a-b pr1) (le a-b2 pr2)
go a-b pr1 a-b2 pr2 eq rewrite eq = applyEquality (λ i le a-b i) (≡Unique pr1 pr2)
leqUnique : {a b : } (p1 : a ≤N b) (p2 : a ≤N b) p1 p2
leqUnique (inl a<b) (inl a<b2) = applyEquality inl (<Nunique a<b a<b2)
leqUnique (inl a<b) (inr a=b) rewrite a=b = exFalso (lessIrreflexive a<b)
leqUnique (inr a=b) (inl a<b) rewrite a=b = exFalso (lessIrreflexive a<b)
leqUnique (inr a=b1) (inr a=b2) rewrite a=b1 | a=b2 = refl
NatMonoid : Category {lzero} {lzero}
NatMonoid = record { objects = True ; arrows = λ _ _ ; id = λ x 0 ; _∘_ = λ f g f +N g ; rightId = λ f refl ; leftId = λ f Semiring.sumZeroRight Semiring f ; associative = λ a b c Semiring.+Associative Semiring a b c }
typeCastCat : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) (G : Functor C D) (S T : Category.objects C) (pr : Functor.onObj F Functor.onObj G) Category.arrows D (Functor.onObj G S) (Functor.onObj G T) Category.arrows D (Functor.onObj F S) (Functor.onObj F T)
typeCastCat F G S T pr rewrite pr = refl
equalityFunctionsEqual : {a b : _} {A : Set a} {B : Set b} (f : A (B B)) (g : A (B B)) (f g)
equalityFunctionsEqual f g = extensionality λ x ≡Unique (f x) (g x)
equalityFunctionsEqual' : {a b : _} {A : Set a} {B : Set b} (f : A (B B)) (g : A (B B)) (f g)
equalityFunctionsEqual' f g = extensionality λ x ≡Unique (f x) (g x)
functorsEqual' : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) (G : Functor C D) (objEq : (Functor.onObj F) Functor.onObj G) (arrEq : {S T : Category.objects C} {f : Category.arrows C S T} (Functor.onArrow F {S} {T} f (typeCast (Functor.onArrow G {S} {T} f) (typeCastCat F G S T objEq)))) F G
functorsEqual' record { onObj = onObjF ; onArrow = onArrowF ; mapId = mapIdF ; mapCompose = mapComposeF } record { onObj = onObjG ; onArrow = onArrowG ; mapId = mapIdG ; mapCompose = mapComposeG } prObj prArr rewrite prObj = {!!}
VEC : {a : _} Functor (SET {a}) (SET {a})
VEC {a} n = record { onObj = λ X Vec X n ; onArrow = λ f λ v vecMap f v ; mapId = extensionality mapId' ; mapCompose = λ f g extensionality λ vec help f g vec }
where
vecMapLemma : {a : _} {T : Set a} {n : } (v : Vec T n) vecMap (Category.id SET T) v v
vecMapLemma {a} v with inspect (SET {a})
vecMapLemma {a} v | y with SetCopy = vecMapIdFact (λ i refl) v
mapId' : {a : _} {T : Set a} {n : } (v : Vec T n) vecMap (Category.id SET T) v Category.id SET (Vec T n) v
mapId' v rewrite vecMapLemma v = refl
help : {a n} {X Y Z : Category.objects (SET {a})} (f : X Y) (g : Y Z) (vec : Vec X n) vecMap (λ x g (f x)) vec vecMap g (vecMap f vec)
help f g vec = equalityCommutative (vecMapCompositionFact (λ x refl) vec)
CATEGORY : {a b : _} Category {lsuc b lsuc a} {b a}
CATEGORY {a} {b} = record { objects = Category {a} {b} ; arrows = λ C D Functor C D ; _∘_ = λ F G functorCompose F G ; id = λ C idFunctor C ; rightId = λ F {!!} ; leftId = λ F {!!} ; associative = {!!} }
where
rightIdFact : {a b c d : _} {C : Category {a} {b}} {D : Category {c} {d}} (F : Functor C D) functorCompose (idFunctor D) F F
rightIdFact {C = C} {D} F = {!!}