Files
agdaproofs/Rings/Ideals/Maximal/Definition.agda
2019-11-23 13:53:54 +00:00

22 lines
902 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Lemmas
open import Groups.Definition
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Sets.EquivalenceRelations
open import Rings.Ideals.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Ideals.Maximal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} {c : _} {pred : A Set c} (i : Ideal R pred) where
record MaximalIdeal {d : _} : Set (a b c lsuc d) where
field
notContained : A
notContainedIsNotContained : (pred notContained) False
isMaximal : {bigger : A Set d} Ideal R bigger ({a : A} pred a bigger a) (Sg A (λ a bigger a && (pred a False))) ({a : A} bigger a)