mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-14 07:58:41 +00:00
209 lines
15 KiB
Agda
209 lines
15 KiB
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
||
|
||
open import LogicalFormulae
|
||
open import Groups.Lemmas
|
||
open import Groups.Definition
|
||
open import Setoids.Orders.Partial.Definition
|
||
open import Setoids.Orders.Total.Definition
|
||
open import Setoids.Setoids
|
||
open import Functions
|
||
open import Sets.EquivalenceRelations
|
||
open import Rings.Definition
|
||
open import Rings.Orders.Total.Definition
|
||
open import Rings.Orders.Partial.Definition
|
||
open import Numbers.Naturals.Semiring
|
||
open import Numbers.Naturals.Order
|
||
open import Orders.Total.Definition
|
||
open import Rings.IntegralDomains.Definition
|
||
|
||
module Rings.Orders.Total.Lemmas {n m p : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {pOrderRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pOrderRing) where
|
||
|
||
open Ring R
|
||
open Group additiveGroup
|
||
open Setoid S
|
||
open SetoidPartialOrder pOrder
|
||
open TotallyOrderedRing order
|
||
open SetoidTotalOrder total
|
||
open PartiallyOrderedRing pOrderRing
|
||
open import Rings.Lemmas R
|
||
open import Rings.Orders.Partial.Lemmas pOrderRing
|
||
|
||
abstract
|
||
|
||
lemm2 : (a : A) → a < 0G → 0G < inverse a
|
||
lemm2 a a<0 with totality 0R (inverse a)
|
||
lemm2 a a<0 | inl (inl 0<-a) = 0<-a
|
||
lemm2 a a<0 | inl (inr -a<0) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (invLeft {a}) (identLeft {a}) (orderRespectsAddition -a<0 a)) a<0))
|
||
lemm2 a a<0 | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq identRight) t) (Equivalence.reflexive eq) a<0))
|
||
where
|
||
t : a + 0G ∼ 0G
|
||
t = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) 0=-a) (invRight {a})
|
||
|
||
lemm2' : (a : A) → 0G < a → inverse a < 0G
|
||
lemm2' a 0<a with totality 0R (inverse a)
|
||
lemm2' a 0<a | inl (inl 0<-a) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<a (<WellDefined (identLeft {a}) (invLeft {a}) (orderRespectsAddition 0<-a a))))
|
||
lemm2' a 0<a | inl (inr -a<0) = -a<0
|
||
lemm2' a 0<a | inr 0=-a = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq identRight) t) 0<a))
|
||
where
|
||
t : a + 0G ∼ 0G
|
||
t = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) 0=-a) (invRight {a})
|
||
|
||
ringMinusFlipsOrder : {x : A} → (Ring.0R R) < x → (Group.inverse (Ring.additiveGroup R) x) < (Ring.0R R)
|
||
ringMinusFlipsOrder {x = x} 0<x with totality (Ring.0R R) (Group.inverse (Ring.additiveGroup R) x)
|
||
ringMinusFlipsOrder {x} 0<x | inl (inl 0<inv) = exFalso (SetoidPartialOrder.irreflexive pOrder bad')
|
||
where
|
||
bad : (Group.0G (Ring.additiveGroup R) + Group.0G (Ring.additiveGroup R)) < (x + Group.inverse (Ring.additiveGroup R) x)
|
||
bad = ringAddInequalities 0<x 0<inv
|
||
bad' : (Group.0G (Ring.additiveGroup R)) < (Group.0G (Ring.additiveGroup R))
|
||
bad' = SetoidPartialOrder.<WellDefined pOrder (Group.identRight (Ring.additiveGroup R)) (Group.invRight (Ring.additiveGroup R)) bad
|
||
ringMinusFlipsOrder {x} 0<x | inl (inr inv<0) = inv<0
|
||
ringMinusFlipsOrder {x} 0<x | inr 0=inv = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive (Setoid.eq S)) (groupLemmaMove0G (Ring.additiveGroup R) 0=inv) 0<x))
|
||
|
||
ringMinusFlipsOrder' : {x : A} → (Group.inverse (Ring.additiveGroup R) x) < (Ring.0R R) → (Ring.0R R) < x
|
||
ringMinusFlipsOrder' {x} -x<0 with totality (Ring.0R R) x
|
||
ringMinusFlipsOrder' {x} -x<0 | inl (inl 0<x) = 0<x
|
||
ringMinusFlipsOrder' {x} -x<0 | inl (inr x<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (Group.invLeft (Ring.additiveGroup R)) (Group.identRight (Ring.additiveGroup R)) bad))
|
||
where
|
||
bad : ((Group.inverse (Ring.additiveGroup R) x) + x) < (Group.0G (Ring.additiveGroup R) + Group.0G (Ring.additiveGroup R))
|
||
bad = ringAddInequalities -x<0 x<0
|
||
ringMinusFlipsOrder' {x} -x<0 | inr 0=x = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (symmetric (groupLemmaMove0G' (Ring.additiveGroup R) (symmetric 0=x))) (Equivalence.reflexive (Setoid.eq S)) -x<0))
|
||
where
|
||
open Equivalence eq
|
||
|
||
ringMinusFlipsOrder'' : {x : A} → x < (Ring.0R R) → (Ring.0R R) < Group.inverse (Ring.additiveGroup R) x
|
||
ringMinusFlipsOrder'' {x} x<0 = ringMinusFlipsOrder' (SetoidPartialOrder.<WellDefined pOrder {x} {Group.inverse (Ring.additiveGroup R) (Group.inverse (Ring.additiveGroup R) x)} {Ring.0R R} {Ring.0R R} (Equivalence.symmetric (Setoid.eq S) (invInv (Ring.additiveGroup R))) (Equivalence.reflexive (Setoid.eq S)) x<0)
|
||
|
||
ringMinusFlipsOrder''' : {x : A} → (Ring.0R R) < (Group.inverse (Ring.additiveGroup R) x) → x < (Ring.0R R)
|
||
ringMinusFlipsOrder''' {x} 0<-x = SetoidPartialOrder.<WellDefined pOrder (invInv (Ring.additiveGroup R)) (Equivalence.reflexive (Setoid.eq S)) (ringMinusFlipsOrder 0<-x)
|
||
|
||
ringCanCancelPositive : {x y c : A} → (Ring.0R R) < c → (x * c) < (y * c) → x < y
|
||
ringCanCancelPositive {x} {y} {c} 0<c xc<yc = SetoidPartialOrder.<WellDefined pOrder (Group.identLeft additiveGroup) (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive (Group.invLeft additiveGroup)) (Group.identRight additiveGroup))) q''
|
||
where
|
||
open Equivalence (Setoid.eq S)
|
||
have : 0R < ((y * c) + (Group.inverse additiveGroup (x * c)))
|
||
have = SetoidPartialOrder.<WellDefined pOrder (Group.invRight additiveGroup) reflexive (orderRespectsAddition xc<yc (Group.inverse additiveGroup _))
|
||
p1 : 0R < ((y * c) + ((Group.inverse additiveGroup x) * c))
|
||
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (symmetric (Equivalence.transitive eq (*Commutative) (Equivalence.transitive eq ringMinusExtracts (inverseWellDefined additiveGroup *Commutative))))) have
|
||
q : 0R < ((y + Group.inverse additiveGroup x) * c)
|
||
q = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq (Equivalence.transitive eq (Group.+WellDefined additiveGroup *Commutative *Commutative) (symmetric *DistributesOver+)) *Commutative) p1
|
||
q' : 0R < (y + Group.inverse additiveGroup x)
|
||
q' with totality 0R (y + Group.inverse additiveGroup x)
|
||
q' | inl (inl pr) = pr
|
||
q' | inl (inr y-x<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq *Commutative (Ring.timesZero R)) k))
|
||
where
|
||
f : ((y + inverse x) + (inverse (y + inverse x))) < (0G + inverse (y + inverse x))
|
||
f = orderRespectsAddition y-x<0 _
|
||
g : 0G < inverse (y + inverse x)
|
||
g = SetoidPartialOrder.<WellDefined pOrder invRight identLeft f
|
||
h : (0G * c) < ((inverse (y + inverse x)) * c)
|
||
h = ringCanMultiplyByPositive 0<c g
|
||
i : (0R + (0G * c)) < (((y + inverse x) * c) + ((inverse (y + inverse x)) * c))
|
||
i = ringAddInequalities q h
|
||
j : 0R < (((y + inverse x) + (inverse (y + inverse x))) * c)
|
||
j = SetoidPartialOrder.<WellDefined pOrder (Equivalence.transitive eq identLeft (Equivalence.transitive eq *Commutative (Ring.timesZero R))) (symmetric (Equivalence.transitive eq *Commutative (Equivalence.transitive eq *DistributesOver+ (Group.+WellDefined additiveGroup *Commutative *Commutative)))) i
|
||
k : 0R < (0R * c)
|
||
k = SetoidPartialOrder.<WellDefined pOrder reflexive (*WellDefined invRight reflexive) j
|
||
q' | inr 0=y-x = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (*WellDefined x=y reflexive) reflexive xc<yc))
|
||
where
|
||
f : inverse 0G ∼ inverse (y + inverse x)
|
||
f = inverseWellDefined additiveGroup 0=y-x
|
||
g : 0G ∼ (inverse y) + x
|
||
g = Equivalence.transitive eq (symmetric (invIdent additiveGroup)) (Equivalence.transitive eq f (Equivalence.transitive eq (Equivalence.transitive eq (invContravariant additiveGroup) groupIsAbelian) (+WellDefined reflexive (invInv additiveGroup))))
|
||
x=y : x ∼ y
|
||
x=y = transferToRight additiveGroup (symmetric (Equivalence.transitive eq g groupIsAbelian))
|
||
q'' : (0R + x) < ((y + Group.inverse additiveGroup x) + x)
|
||
q'' = orderRespectsAddition q' x
|
||
|
||
|
||
ringCanCancelNegative : {x y c : A} → c < (Ring.0R R) → (x * c) < (y * c) → y < x
|
||
ringCanCancelNegative {x} {y} {c} c<0 xc<yc = r
|
||
where
|
||
open Equivalence eq
|
||
p0 : 0R < ((y * c) + inverse (x * c))
|
||
p0 = SetoidPartialOrder.<WellDefined pOrder invRight reflexive (orderRespectsAddition xc<yc (inverse (x * c)))
|
||
p1 : 0R < ((y * c) + ((inverse x) * c))
|
||
p1 = SetoidPartialOrder.<WellDefined pOrder reflexive (Group.+WellDefined additiveGroup reflexive (Equivalence.transitive eq (inverseWellDefined additiveGroup *Commutative) (Equivalence.transitive eq (symmetric ringMinusExtracts) *Commutative))) p0
|
||
p2 : 0R < ((y + inverse x) * c)
|
||
p2 = SetoidPartialOrder.<WellDefined pOrder reflexive (Equivalence.transitive eq (Group.+WellDefined additiveGroup *Commutative *Commutative) (Equivalence.transitive eq (symmetric *DistributesOver+) *Commutative)) p1
|
||
q : (y + inverse x) < 0R
|
||
q with totality 0R (y + inverse x)
|
||
q | inl (inl pr) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder bad c<0))
|
||
where
|
||
bad : 0R < c
|
||
bad = ringCanCancelPositive pr (SetoidPartialOrder.<WellDefined pOrder (symmetric (Equivalence.transitive eq *Commutative (Ring.timesZero R))) *Commutative p2)
|
||
q | inl (inr pr) = pr
|
||
q | inr 0=y-x = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (*WellDefined x=y reflexive) reflexive xc<yc))
|
||
where
|
||
x=y : x ∼ y
|
||
x=y = Equivalence.transitive eq (symmetric identLeft) (Equivalence.transitive eq (Group.+WellDefined additiveGroup 0=y-x reflexive) (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive invLeft) identRight)))
|
||
r : y < x
|
||
r = SetoidPartialOrder.<WellDefined pOrder (Equivalence.transitive eq (symmetric (Group.+Associative additiveGroup)) (Equivalence.transitive eq (Group.+WellDefined additiveGroup reflexive (invLeft)) identRight)) (Group.identLeft additiveGroup) (orderRespectsAddition q x)
|
||
|
||
posTimesNeg : (a b : A) → (0G < a) → (b < 0G) → (a * b) < 0G
|
||
posTimesNeg a b 0<a b<0 with orderRespectsMultiplication 0<a (lemm2 _ b<0)
|
||
... | bl = <WellDefined (invTwice additiveGroup _) (Equivalence.reflexive eq) (lemm2' _ (<WellDefined (Equivalence.reflexive eq) ringMinusExtracts bl))
|
||
|
||
negTimesPos : (a b : A) → (a < 0G) → (b < 0G) → 0G < (a * b)
|
||
negTimesPos a b a<0 b<0 with orderRespectsMultiplication (lemm2 _ a<0) (lemm2 _ b<0)
|
||
... | bl = <WellDefined (Equivalence.reflexive eq) twoNegativesTimes bl
|
||
|
||
halvePositive : (a : A) → 0R < (a + a) → 0R < a
|
||
halvePositive a 0<2a with totality 0R a
|
||
halvePositive a 0<2a | inl (inl x) = x
|
||
halvePositive a 0<2a | inl (inr a<0) = exFalso (irreflexive {a + a} (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) identRight (ringAddInequalities a<0 a<0)) 0<2a))
|
||
halvePositive a 0<2a | inr x = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq x) (Equivalence.symmetric eq x)) identRight) 0<2a))
|
||
|
||
halvePositive' : {a b : A} → (a + a) ∼ b → 0R < b → 0R < a
|
||
halvePositive' {a} {b} pr 0<b = halvePositive a (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr) 0<b)
|
||
|
||
0<1 : (0R ∼ 1R → False) → 0R < 1R
|
||
0<1 0!=1 with totality 0R 1R
|
||
0<1 0!=1 | inl (inl x) = x
|
||
0<1 0!=1 | inl (inr x) = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq twoNegativesTimes identIsIdent) (orderRespectsMultiplication (lemm2 1R x) (lemm2 1R x))
|
||
0<1 0!=1 | inr x = exFalso (0!=1 x)
|
||
|
||
|
||
1<0False : (1R < 0R) → False
|
||
1<0False 1<0 with orderRespectsMultiplication (lemm2 _ 1<0) (lemm2 _ 1<0)
|
||
... | bl = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder 1<0 (<WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (twoNegativesTimes) identIsIdent) bl)))
|
||
|
||
orderedImpliesCharNot2 : (0R ∼ 1R → False) → 1R + 1R ∼ 0R → False
|
||
orderedImpliesCharNot2 0!=1 x = irreflexive (<WellDefined (identRight {0R}) x (ringAddInequalities (0<1 0!=1) (0<1 0!=1)))
|
||
|
||
open import Rings.InitialRing R
|
||
open Equivalence eq
|
||
|
||
fromNPreservesOrder' : (0R ∼ 1R → False) → {a b : ℕ} → (fromN a) < (fromN b) → a <N b
|
||
fromNPreservesOrder' nontrivial {a} {b} a<b with TotalOrder.totality ℕTotalOrder a b
|
||
... | inl (inl x) = x
|
||
... | inl (inr x) = exFalso (irreflexive (<Transitive a<b (fromNPreservesOrder (0<1 nontrivial) x)))
|
||
... | inr x = exFalso (irreflexive (<WellDefined (fromNWellDefined x) reflexive a<b))
|
||
|
||
reciprocalPositive : (a b : A) → .(0<a : 0R < a) → (a * b ∼ 1R) → 0R < b
|
||
reciprocalPositive a 1/a 0<a ab=1 with totality 0G 1/a
|
||
... | inl (inl x) = x
|
||
... | inl (inr x) = exFalso (1<0False (<WellDefined (transitive *Commutative ab=1) timesZero' (ringCanMultiplyByPositive 0<a x)))
|
||
... | inr x = exFalso (anyComparisonImpliesNontrivial 0<a (transitive (transitive (symmetric timesZero) (*WellDefined reflexive x)) ab=1))
|
||
|
||
reciprocalPositive' : (a b : A) → .(0<a : 0R < a) → (b * a ∼ 1R) → 0R < b
|
||
reciprocalPositive' a 1/a 0<a ab=1 = reciprocalPositive a 1/a 0<a (transitive *Commutative ab=1)
|
||
|
||
reciprocal<1 : (a b : A) → .(1<a : 1R < a) → (a * b ∼ 1R) → b < 1R
|
||
reciprocal<1 a b 0<a ab=1 with totality b 1R
|
||
... | inl (inl x) = x
|
||
... | inr b=1 = exFalso (irreflexive (<WellDefined (symmetric ab=1) (transitive (symmetric identIsIdent) (transitive *Commutative ((*WellDefined reflexive (symmetric b=1))))) 0<a))
|
||
... | inl (inr x) = exFalso (irreflexive (<WellDefined identIsIdent ab=1 (ringMultiplyPositives (0<1 (anyComparisonImpliesNontrivial 0<a)) (0<1 (anyComparisonImpliesNontrivial 0<a)) 0<a x)))
|
||
|
||
isIntDom : (nonempty : 1R ∼ 0R → False) → IntegralDomain R
|
||
IntegralDomain.intDom (isIntDom n) {a} {b} ab=0 a!=0 with totality 0R b
|
||
... | inr 0=b = symmetric 0=b
|
||
IntegralDomain.intDom (isIntDom n) {a} {b} ab=0 a!=0 | inl (inl 0<b) with totality 0R a
|
||
... | inl (inl x) = exFalso (irreflexive (<WellDefined reflexive ab=0 (orderRespectsMultiplication x 0<b)))
|
||
... | inl (inr x) = exFalso (irreflexive (<WellDefined ab=0 timesZero' (ringCanMultiplyByPositive 0<b x)))
|
||
... | inr x = exFalso (a!=0 (symmetric x))
|
||
IntegralDomain.intDom (isIntDom n) {a} {b} ab=0 a!=0 | inl (inr b<0) with totality 0R a
|
||
... | inl (inl x) = exFalso (irreflexive (<WellDefined (transitive *Commutative ab=0) timesZero' (ringCanMultiplyByPositive x b<0)))
|
||
... | inl (inr x) = exFalso (irreflexive (<WellDefined reflexive (transitive twoNegativesTimes ab=0) (orderRespectsMultiplication (lemm2 a x) (lemm2 b b<0))))
|
||
... | inr x = exFalso (a!=0 (symmetric x))
|
||
IntegralDomain.nontrivial (isIntDom n) = n
|