mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 22:58:40 +00:00
34 lines
925 B
Agda
34 lines
925 B
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
|
|
|
open import LogicalFormulae
|
|
open import Groups.Groups
|
|
open import Groups.Homomorphisms.Definition
|
|
open import Groups.Definition
|
|
open import Numbers.Naturals.Definition
|
|
open import Setoids.Orders
|
|
open import Setoids.Setoids
|
|
open import Functions
|
|
open import Sets.EquivalenceRelations
|
|
open import Rings.Definition
|
|
open import Vectors
|
|
open import Lists.Lists
|
|
open import Maybe
|
|
open import Rings.Homomorphisms.Definition
|
|
|
|
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
|
|
|
module Rings.Polynomial.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
|
|
|
|
open Setoid S
|
|
open Equivalence eq
|
|
open Ring R
|
|
|
|
open import Groups.Polynomials.Definition additiveGroup
|
|
|
|
1P : NaivePoly
|
|
1P = 1R :: []
|
|
|
|
inducedFunction : NaivePoly → A → A
|
|
inducedFunction [] a = 0R
|
|
inducedFunction (x :: p) a = x + (a * inducedFunction p a)
|