Files
agdaproofs/Reals.agda
2019-01-04 20:45:34 +00:00

25 lines
831 B
Agda

{-# OPTIONS --safe --warning=error #-}
open import Fields
open import Rings
open import Functions
open import Orders
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Reals where
record Subset {m n : _} (A : Set m) (B : Set n) : Set (m n) where
field
inj : A B
injInj : Injection inj
record RealField {n : _} {A : Set n} {R : Ring A} {F : Field R} : Set _ where
field
orderedField : OrderedField F
open OrderedField orderedField
open TotalOrder ord
open Ring R
field
complete : {c : _} {C : Set c} (S : Subset C A) (upperBound : A) ({s : C} (Subset.inj S s) < upperBound) Sg A (λ lub ({s : C} (Subset.inj S s) < lub) && ({s : C} (Subset.inj S s) < upperBound (Subset.inj S s) < lub))