Files
agdaproofs/Fields/Orders/Total/Lemmas.agda
2020-04-18 17:47:27 +01:00

46 lines
1.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import Fields.Fields
open import Fields.Orders.Total.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Sets.EquivalenceRelations
open import LogicalFormulae
open import Groups.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Total.Lemmas {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} {F : Field R} {p : _} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} {oR : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F oR) where
open Ring R
open Group additiveGroup
open Setoid S
open Equivalence eq
open Field F
open TotallyOrderedField oF
open TotallyOrderedRing oRing
open PartiallyOrderedRing oR
open SetoidTotalOrder total
open SetoidPartialOrder pOrder
open import Rings.InitialRing R
open import Rings.Orders.Total.Lemmas oRing
open import Rings.Orders.Partial.Lemmas oR
open import Rings.Lemmas R
open import Groups.Lemmas additiveGroup
charNotN : (n : ) fromN (succ n) 0R False
charNotN n pr = irreflexive (<WellDefined reflexive pr t)
where
t : 0R < fromN (succ n)
t = fromNPreservesOrder (0<1 (Field.nontrivial F)) (succIsPositive n)
charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False
charNot2 pr = charNotN 1 (transitive (transitive +Associative identRight) pr)