Files
agdaproofs/Numbers/Naturals/Order.agda
2019-10-03 06:53:13 +01:00

103 lines
5.1 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Addition
module Numbers.Naturals.Order where
infix 5 _<NLogical_
_<NLogical_ : Set
zero <NLogical zero = False
zero <NLogical (succ n) = True
(succ n) <NLogical zero = False
(succ n) <NLogical (succ m) = n <NLogical m
infix 5 _<N_
record _<N_ (a : ) (b : ) : Set where
constructor le
field
x :
proof : (succ x) +N a b
infix 5 _≤N_
_≤N_ : Set
a ≤N b = (a <N b) || (a b)
succIsPositive : (a : ) zero <N succ a
succIsPositive a = le a (applyEquality succ (additionNIsCommutative a 0))
aLessSucc : (a : ) (a <NLogical succ a)
aLessSucc zero = record {}
aLessSucc (succ a) = aLessSucc a
succPreservesInequalityLogical : {a b : } (a <NLogical b) (succ a <NLogical succ b)
succPreservesInequalityLogical {a} {b} prAB = prAB
lessTransitiveLogical : {a b c : } (a <NLogical b) (b <NLogical c) (a <NLogical c)
lessTransitiveLogical {a} {zero} {zero} prAB prBC = prAB
lessTransitiveLogical {a} {(succ b)} {zero} prAB ()
lessTransitiveLogical {zero} {zero} {(succ c)} prAB prBC = record {}
lessTransitiveLogical {(succ a)} {zero} {(succ c)} () prBC
lessTransitiveLogical {zero} {(succ b)} {(succ c)} prAB prBC = record {}
lessTransitiveLogical {(succ a)} {(succ b)} {(succ c)} prAB prBC = lessTransitiveLogical {a} {b} {c} prAB prBC
aLessXPlusSuccA : (a x : ) (a <NLogical x +N succ a)
aLessXPlusSuccA a zero = aLessSucc a
aLessXPlusSuccA zero (succ x) = record {}
aLessXPlusSuccA (succ a) (succ x) = lessTransitiveLogical {a} {succ a} {x +N succ (succ a)} (aLessXPlusSuccA a zero) (aLessXPlusSuccA (succ a) x)
leImpliesLogical<N : {a b : } (a <N b) (a <NLogical b)
leImpliesLogical<N {zero} {zero} (le x ())
leImpliesLogical<N {zero} {(succ b)} (le x proof) = record {}
leImpliesLogical<N {(succ a)} {zero} (le x ())
leImpliesLogical<N {(succ a)} {(succ .(succ a))} (le zero refl) = aLessSucc a
leImpliesLogical<N {(succ a)} {(succ .(succ (x +N succ a)))} (le (succ x) refl) = succPreservesInequalityLogical {a} {succ (x +N succ a)} (lessTransitiveLogical {a} {succ a} {succ (x +N succ a)} (aLessSucc a) (aLessXPlusSuccA a x))
logical<NImpliesLe : {a b : } (a <NLogical b) (a <N b)
logical<NImpliesLe {zero} {zero} ()
_<N_.x (logical<NImpliesLe {zero} {succ b} prAB) = b
_<N_.proof (logical<NImpliesLe {zero} {succ b} prAB) = applyEquality succ (addZeroRight b)
logical<NImpliesLe {(succ a)} {zero} ()
logical<NImpliesLe {(succ a)} {(succ b)} prAB with logical<NImpliesLe {a} prAB
logical<NImpliesLe {(succ a)} {(succ .(succ (x +N a)))} prAB | le x refl = le x (succCanMove (succ x) a)
lessTransitive : {a b c : } (a <N b) (b <N c) (a <N c)
lessTransitive {a} {b} {c} prab prbc = logical<NImpliesLe (lessTransitiveLogical {a} {b} {c} (leImpliesLogical<N prab) (leImpliesLogical<N prbc))
lessIrreflexive : {a : } (a <N a) False
lessIrreflexive {zero} pr = leImpliesLogical<N pr
lessIrreflexive {succ a} pr = lessIrreflexive {a} (logical<NImpliesLe {a} {a} (leImpliesLogical<N {succ a} {succ a} pr))
succPreservesInequality : {a b : } (a <N b) (succ a <N succ b)
succPreservesInequality {a} {b} prAB = logical<NImpliesLe (succPreservesInequalityLogical {a} {b} (leImpliesLogical<N prAB))
canRemoveSuccFrom<N : {a b : } (succ a <N succ b) (a <N b)
canRemoveSuccFrom<N {a} {b} (le x proof) rewrite additionNIsCommutative x (succ a) | additionNIsCommutative a x = le x (succInjective proof)
a<SuccA : (a : ) a <N succ a
a<SuccA a = le zero refl
canAddToOneSideOfInequality : {a b : } (c : ) a <N b a <N (b +N c)
canAddToOneSideOfInequality {a} {b} c (le x proof) = le (x +N c) (transitivity (applyEquality succ (additionNIsAssociative x c a)) (transitivity (applyEquality (λ i (succ x) +N i) (additionNIsCommutative c a)) (transitivity (applyEquality succ (equalityCommutative (additionNIsAssociative x a c))) (applyEquality (_+N c) proof))))
addingIncreases : (a b : ) a <N a +N succ b
addingIncreases zero b = succIsPositive b
addingIncreases (succ a) b = succPreservesInequality (addingIncreases a b)
zeroNeverGreater : {a : } (a <N zero) False
zeroNeverGreater {a} (le x ())
noIntegersBetweenXAndSuccX : {a : } (x : ) (x <N a) (a <N succ x) False
noIntegersBetweenXAndSuccX {zero} x x<a a<sx = zeroNeverGreater x<a
noIntegersBetweenXAndSuccX {succ a} x (le y proof) (le z proof1) with succInjective proof1
... | ah rewrite (equalityCommutative proof) | (succExtracts z (y +N x)) | equalityCommutative (additionNIsAssociative (succ z) y x) | additionNIsCommutative (succ (z +N y)) x = lessIrreflexive {x} (le (z +N y) (transitivity (additionNIsCommutative _ x) ah))
<NWellDefined : {a b : } (p1 : a <N b) (p2 : a <N b) _<N_.x p1 _<N_.x p2
<NWellDefined {a} {b} (le x proof) (le y proof1) = equalityCommutative r
where
q : y +N a x +N a
q = succInjective {y +N a} {x +N a} (transitivity proof1 (equalityCommutative proof))
r : y x
r = canSubtractFromEqualityRight q