mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 14:18:41 +00:00
25 lines
900 B
Agda
25 lines
900 B
Agda
{-# OPTIONS --safe --warning=error --without-K #-}
|
||
|
||
open import LogicalFormulae
|
||
open import Groups.Groups
|
||
open import Groups.Homomorphisms.Definition
|
||
open import Groups.Definition
|
||
open import Numbers.Naturals.Naturals
|
||
open import Setoids.Orders
|
||
open import Setoids.Setoids
|
||
open import Functions
|
||
open import Sets.EquivalenceRelations
|
||
open import Rings.Definition
|
||
open import Rings.Homomorphisms.Definition
|
||
open import Groups.Homomorphisms.Lemmas
|
||
|
||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||
|
||
module Rings.Ideals.Principal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
|
||
|
||
open import Rings.Ideals.Definition R
|
||
open Setoid S
|
||
|
||
PrincipalIdeal : {c : _} {pred : A → Set c} (ideal : Ideal pred) → Set (a ⊔ b ⊔ c)
|
||
PrincipalIdeal {pred = pred} ideal = Sg A (λ a → {x : A} → (pred x) → Sg A (λ c → (a * c) ∼ x))
|