Files
agdaproofs/Groups/QuotientGroup/Definition.agda
2019-11-22 19:52:57 +00:00

111 lines
7.0 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe --without-K #-}
open import Functions
open import Sets.FinSet
open import LogicalFormulae
open import Groups.Definition
open import Groups.Groups
open import Groups.FiniteGroups.Definition
open import Groups.Homomorphisms.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Groups.Lemmas
open import Groups.Homomorphisms.Lemmas
open import Groups.Subgroups.Definition
open import Groups.Subgroups.Normal.Definition
module Groups.QuotientGroup.Definition {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (fHom : GroupHom G H f) where
quotientGroupSetoid : (Setoid {a} {d} A)
quotientGroupSetoid = ansSetoid
where
open Setoid T
open Group H
open Equivalence eq
ansSetoid : Setoid A
Setoid.__ ansSetoid r s = (f (r ·A (Group.inverse G s))) 0G
Equivalence.reflexive (Setoid.eq ansSetoid) {b} = transitive (GroupHom.wellDefined fHom (Group.invRight G)) (imageOfIdentityIsIdentity fHom)
Equivalence.symmetric (Setoid.eq ansSetoid) {m} {n} pr = i
where
g : f (Group.inverse G (m ·A Group.inverse G n)) 0G
g = transitive (homRespectsInverse fHom {m ·A Group.inverse G n}) (transitive (inverseWellDefined H pr) (invIdent H))
h : f (Group.inverse G (Group.inverse G n) ·A Group.inverse G m) 0G
h = transitive (GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) (invContravariant G))) g
i : f (n ·A Group.inverse G m) 0G
i = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (invTwice G n)) (Equivalence.reflexive (Setoid.eq S)))) h
Equivalence.transitive (Setoid.eq ansSetoid) {m} {n} {o} prmn prno = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Equivalence.symmetric (Setoid.eq S) (Group.identLeft G)))) k
where
g : f (m ·A Group.inverse G n) ·B f (n ·A Group.inverse G o) 0G ·B 0G
g = replaceGroupOp H reflexive reflexive prmn prno reflexive
h : f (m ·A Group.inverse G n) ·B f (n ·A Group.inverse G o) 0G
h = transitive g identLeft
i : f ((m ·A Group.inverse G n) ·A (n ·A Group.inverse G o)) 0G
i = transitive (GroupHom.groupHom fHom) h
j : f (m ·A (((Group.inverse G n) ·A n) ·A Group.inverse G o)) 0G
j = transitive (GroupHom.wellDefined fHom (fourWay+Associative G)) i
k : f (m ·A ((Group.0G G) ·A Group.inverse G o)) 0G
k = transitive (GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (Group.+WellDefined G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.reflexive (Setoid.eq S))))) j
quotientGroupByHom : Group (quotientGroupSetoid) _·A_
Group.+WellDefined (quotientGroupByHom) {x} {y} {m} {n} x~m y~n = ans
where
open Setoid T
open Equivalence (Setoid.eq T)
p1 : f ((x ·A y) ·A (Group.inverse G (m ·A n))) f ((x ·A y) ·A ((Group.inverse G n) ·A (Group.inverse G m)))
p2 : f ((x ·A y) ·A ((Group.inverse G n) ·A (Group.inverse G m))) f (x ·A ((y ·A (Group.inverse G n)) ·A (Group.inverse G m)))
p3 : f (x ·A ((y ·A (Group.inverse G n)) ·A (Group.inverse G m))) (f x) ·B f ((y ·A (Group.inverse G n)) ·A (Group.inverse G m))
p4 : (f x) ·B f ((y ·A (Group.inverse G n)) ·A (Group.inverse G m)) (f x) ·B (f (y ·A (Group.inverse G n)) ·B f (Group.inverse G m))
p5 : (f x) ·B (f (y ·A (Group.inverse G n)) ·B f (Group.inverse G m)) (f x) ·B (Group.0G H ·B f (Group.inverse G m))
p6 : (f x) ·B (Group.0G H ·B f (Group.inverse G m)) (f x) ·B f (Group.inverse G m)
p7 : (f x) ·B f (Group.inverse G m) f (x ·A (Group.inverse G m))
p8 : f (x ·A (Group.inverse G m)) Group.0G H
p1 = GroupHom.wellDefined fHom (Group.+WellDefined G (Equivalence.reflexive (Setoid.eq S)) (invContravariant G))
p2 = GroupHom.wellDefined fHom (Equivalence.symmetric (Setoid.eq S) (fourWay+Associative G))
p3 = GroupHom.groupHom fHom
p4 = Group.+WellDefined H reflexive (GroupHom.groupHom fHom)
p5 = Group.+WellDefined H reflexive (replaceGroupOp H (symmetric y~n) reflexive reflexive reflexive reflexive)
p6 = Group.+WellDefined H reflexive (Group.identLeft H)
p7 = symmetric (GroupHom.groupHom fHom)
p8 = x~m
ans : f ((x ·A y) ·A (Group.inverse G (m ·A n))) Group.0G H
ans = transitive p1 (transitive p2 (transitive p3 (transitive p4 (transitive p5 (transitive p6 (transitive p7 p8))))))
Group.0G (quotientGroupByHom) = Group.0G G
Group.inverse (quotientGroupByHom) = Group.inverse G
Group.+Associative (quotientGroupByHom) {a} {b} {c} = ans
where
open Setoid T
open Equivalence (Setoid.eq T)
ans : f ((a ·A (b ·A c)) ·A (Group.inverse G ((a ·A b) ·A c))) Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transferToRight'' G (Group.+Associative G))) (imageOfIdentityIsIdentity fHom)
Group.identRight (quotientGroupByHom) {a} = ans
where
open Group G
open Setoid T
open Equivalence eq
transitiveG = Equivalence.transitive (Setoid.eq S)
ans : f ((a ·A 0G) ·A inverse a) Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transitiveG (Group.+WellDefined G (Group.identRight G) (Equivalence.reflexive (Setoid.eq S))) (Group.invRight G))) (imageOfIdentityIsIdentity fHom)
Group.identLeft (quotientGroupByHom) {a} = ans
where
open Group G
open Setoid T
open Equivalence eq
transitiveG = Equivalence.transitive (Setoid.eq S)
ans : f ((0G ·A a) ·A (inverse a)) Group.0G H
ans = transitive (GroupHom.wellDefined fHom (transitiveG (Group.+WellDefined G (Group.identLeft G) (Equivalence.reflexive (Setoid.eq S))) (Group.invRight G))) (imageOfIdentityIsIdentity fHom)
Group.invLeft (quotientGroupByHom) {x} = ans
where
open Group G
open Setoid T
open Equivalence eq
ans : f ((inverse x ·A x) ·A (inverse 0G)) (Group.0G H)
ans = transitive (GroupHom.wellDefined fHom (Equivalence.transitive (Setoid.eq S) (replaceGroupOp G (Equivalence.symmetric (Setoid.eq S) (Group.invLeft G)) (Equivalence.symmetric (Setoid.eq S) (invIdent G)) (Equivalence.reflexive (Setoid.eq S)) ((Equivalence.reflexive (Setoid.eq S))) ((Equivalence.reflexive (Setoid.eq S)))) (identRight {0G}))) (imageOfIdentityIsIdentity fHom)
Group.invRight (quotientGroupByHom) {x} = ans
where
open Group G
open Setoid T
open Equivalence eq
ans : f ((x ·A inverse x) ·A (inverse 0G)) (Group.0G H)
ans = transitive (GroupHom.wellDefined fHom (Equivalence.transitive (Setoid.eq S) (replaceGroupOp G (Equivalence.symmetric (Setoid.eq S) (Group.invRight G)) (Equivalence.symmetric (Setoid.eq S) (invIdent G)) (Equivalence.reflexive (Setoid.eq S)) (Equivalence.reflexive (Setoid.eq S)) (Equivalence.reflexive (Setoid.eq S))) (identRight {0G}))) (imageOfIdentityIsIdentity fHom)