Files
agdaproofs/Groups/Isomorphisms/Lemmas.agda
2019-11-03 17:12:48 +00:00

39 lines
2.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Groups.Isomorphisms.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
module Groups.Isomorphisms.Lemmas where
groupIsosCompose : {m n o r s t : _} {A : Set m} {S : Setoid {m} {r} A} {_+A_ : A A A} {B : Set n} {T : Setoid {n} {s} B} {_+B_ : B B B} {C : Set o} {U : Setoid {o} {t} C} {_+C_ : C C C} {G : Group S _+A_} {H : Group T _+B_} {I : Group U _+C_} {f : A B} {g : B C} (fHom : GroupIso G H f) (gHom : GroupIso H I g) GroupIso G I (g f)
GroupIso.groupHom (groupIsosCompose fHom gHom) = groupHomsCompose (GroupIso.groupHom fHom) (GroupIso.groupHom gHom)
GroupIso.bij (groupIsosCompose {A = A} {S = S} {T = T} {C = C} {U = U} {f = f} {g = g} fHom gHom) = record { inj = record { injective = λ pr (SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij fHom))) (SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij gHom)) pr) ; wellDefined = +WellDefined } ; surj = record { surjective = surj ; wellDefined = +WellDefined } }
where
open Setoid S renaming (__ to _A_)
open Setoid U renaming (__ to _C_)
+WellDefined : {x y : A} (x A y) (g (f x) C g (f y))
+WellDefined = GroupHom.wellDefined (groupHomsCompose (GroupIso.groupHom fHom) (GroupIso.groupHom gHom))
surj : {x : C} Sg A (λ a (g (f a) C x))
surj {x} with SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij gHom)) {x}
surj {x} | a , prA with SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij fHom)) {a}
... | b , prB = b , transitive (GroupHom.wellDefined (GroupIso.groupHom gHom) prB) prA
where
open Equivalence (Setoid.eq U)
--groupIsoInvertible : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d}} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (iso : GroupIso G H f) GroupIso H G (Invertible.inverse (bijectionImpliesInvertible (GroupIso.bijective iso)))
--GroupHom.groupHom (GroupIso.groupHom (groupIsoInvertible {G = G} {H} {f} iso)) {x} {y} = {!!}
-- where
-- open Group G renaming (_·_ to _+G_)
-- open Group H renaming (_·_ to _+H_)
--GroupHom.wellDefined (GroupIso.groupHom (groupIsoInvertible {G = G} {H} {f} iso)) {x} {y} xy = {!GroupHom.wellDefined xy!}
--GroupIso.bijective (groupIsoInvertible {G = G} {H} {f} iso) = invertibleImpliesBijection (inverseIsInvertible (bijectionImpliesInvertible (GroupIso.bijective iso)))