Files
agdaproofs/Groups/Homomorphisms/Lemmas.agda
2019-11-20 21:20:03 +00:00

49 lines
2.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Sets.FinSet
open import Groups.Definition
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Lemmas
module Groups.Homomorphisms.Lemmas {a b c d : _} {A : Set a} {S : Setoid {a} {c} A} {B : Set b} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {G : Group S _+A_} {H : Group T _+B_} {f : A B} (hom : GroupHom G H f) where
imageOfIdentityIsIdentity : Setoid.__ T (f (Group.0G G)) (Group.0G H)
imageOfIdentityIsIdentity = Equivalence.symmetric (Setoid.eq T) t
where
open Group H
open Setoid T
id2 : Setoid.__ S (Group.0G G) ((Group.0G G) +A (Group.0G G))
id2 = Equivalence.symmetric (Setoid.eq S) (Group.identRight G)
r : f (Group.0G G) f (Group.0G G) +B f (Group.0G G)
s : 0G +B f (Group.0G G) f (Group.0G G) +B f (Group.0G G)
t : 0G f (Group.0G G)
t = groupsHaveRightCancellation H (f (Group.0G G)) 0G (f (Group.0G G)) s
s = Equivalence.transitive (Setoid.eq T) identLeft r
r = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined hom id2) (GroupHom.groupHom hom)
groupHomsCompose : {o t : _} {C : Set o} {U : Setoid {o} {t} C} {_+C_ : C C C} {I : Group U _+C_} {g : B C} (gHom : GroupHom H I g) GroupHom G I (g f)
GroupHom.wellDefined (groupHomsCompose {I} {f} gHom) {x} {y} pr = GroupHom.wellDefined gHom (GroupHom.wellDefined hom pr)
GroupHom.groupHom (groupHomsCompose {U = U} {_+C_ = _·C_} {I} {g} gHom) {x} {y} = answer
where
open Group I
answer : (Setoid.__ U) ((g f) (x +A y)) ((g f) x ·C (g f) y)
answer = (Equivalence.transitive (Setoid.eq U)) (GroupHom.wellDefined gHom (GroupHom.groupHom hom {x} {y}) ) (GroupHom.groupHom gHom {f x} {f y})
homRespectsInverse : {x : A} Setoid.__ T (f (Group.inverse G x)) (Group.inverse H (f x))
homRespectsInverse {x} = rightInversesAreUnique H (f x) (f (Group.inverse G x)) (transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Group.invLeft G)) imageOfIdentityIsIdentity))
where
open Setoid T
open Equivalence eq
zeroImpliesInverseZero : {x : A} Setoid.__ T (f x) (Group.0G H) Setoid.__ T (f (Group.inverse G x)) (Group.0G H)
zeroImpliesInverseZero {x} fx=0 = transitive homRespectsInverse (transitive (inverseWellDefined H fx=0) (invIdent H))
where
open Setoid T
open Equivalence eq