Files
agdaproofs/Fields/Orders/Partial/Definition.agda
2019-11-22 19:52:57 +00:00

26 lines
845 B
Agda

{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Definition
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Lemmas
open import Setoids.Setoids
open import Setoids.Orders
open import Orders
open import Functions
open import Sets.EquivalenceRelations
open import Fields.Fields
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Fields.Orders.Partial.Definition {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) where
open Ring R
open import Fields.Lemmas F
record PartiallyOrderedField {p} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc (m n p)) where
field
oRing : PartiallyOrderedRing R pOrder