Files
agdaproofs/Groups/FreeProduct/Group.agda
2020-03-28 21:34:14 +00:00

119 lines
15 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --safe --warning=error #-}
open import Sets.EquivalenceRelations
open import Functions
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Groups.Definition
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Groups.Lemmas
module Groups.FreeProduct.Group {i : _} {I : Set i} (decidableIndex : (x y : I) ((x y) || ((x y) False))) {a b : _} {A : I Set a} {S : (i : I) Setoid {a} {b} (A i)} {_+_ : (i : I) (A i) (A i) A i} (decidableGroups : (i : I) (x y : A i) ((Setoid.__ (S i) x y)) || ((Setoid.__ (S i) x y) False)) (G : (i : I) Group (S i) (_+_ i)) where
open import Groups.FreeProduct.Definition decidableIndex decidableGroups G
open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G
open import Groups.FreeProduct.Addition decidableIndex decidableGroups G
private
inv' : {i : I} (x : ReducedSequenceBeginningWith i) ReducedSequence
inv' (ofEmpty i g nonZero) = nonempty i (ofEmpty i (Group.inverse (G i) g) (λ pr nonZero (Equivalence.transitive (Setoid.eq (S i)) (swapInv (G i) pr) (invIdent (G i)))))
inv' (prependLetter i g nonZero {j} w i!=j) = (inv' w) +RP injection (Group.inverse (G i) g) (λ pr nonZero (Equivalence.transitive (Setoid.eq (S i)) (swapInv (G i) pr) (invIdent (G i))))
inv : (x : ReducedSequence) ReducedSequence
inv empty = empty
inv (nonempty i w) = inv' w
private
abstract
lemma1 : {i j k : I} (i!=j : (i j) False) (g : A i) (h : A j) (w : ReducedSequenceBeginningWith k) (j!=k : (j k) False) .(pr : _) .(pr2 : _) .(pr3 : _) (prepend i (Group.inverse (G i) g) pr (nonempty i (prependLetter i g pr2 (prependLetter j h pr3 w j!=k) i!=j))) =RP nonempty j (prependLetter j h pr3 w j!=k)
lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 with decidableIndex i i
... | inr x = exFalso (x refl)
lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i))
... | inr bad = exFalso (bad (Group.invLeft (G i)))
lemma1 {i} {j} {k} i!=j g h r j!=k pr pr2 pr3 | inl refl | inl eq1 with decidableIndex j j
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S j)) ,, =RP'reflex r
abstract
lemma2 : {j k : I} (j!=k : (j k) False) (h : A j) (w : ReducedSequenceBeginningWith k) .(pr : _) .(pr2 : _) (prepend j (Group.inverse (G j) h) pr (nonempty j (prependLetter j h pr2 w j!=k))) =RP (nonempty k w)
lemma2 {j} {k} j!=k h r pr pr2 with decidableIndex j j
... | inr bad = exFalso (bad refl)
lemma2 {j} {k} j!=k h r pr pr2 | inl refl with decidableGroups j ((j + Group.inverse (G j) h) h) (Group.0G (G j))
... | inr bad = exFalso (bad (Group.invLeft (G j)))
... | inl x = =RP'reflex r
abstract
unpeel : (k : ReducedSequence) {j : I} (g : A j) .(pr : _) .(pr2 : _) k =RP empty (prepend j g pr (k +RP (nonempty j (ofEmpty j (Group.inverse (G j) g) pr2)))) =RP empty
unpeel empty {j} g pr pr2 x with decidableIndex j j
... | inr bad = exFalso (bad refl)
unpeel empty {j} g pr pr2 x | inl refl with decidableGroups j ((j + g) (Group.inverse (G j) g)) (Group.0G (G j))
... | inl _ = record {}
... | inr bad = exFalso (bad (Group.invRight (G j)))
abstract
invRight' : {i : I} (x : ReducedSequenceBeginningWith i) ((nonempty i x) +RP inv (nonempty i x)) =RP empty
invRight' {i} (ofEmpty _ g nonZero) with decidableIndex i i
... | inr x = exFalso (x refl)
invRight' {i} (ofEmpty _ g nonZero) | inl refl with decidableGroups i ((i + g) (Group.inverse (G i) g)) (Group.0G (G i))
... | inr x = exFalso (x (Group.invRight (G i)))
... | inl x = record {}
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) with decidableIndex k j
... | inl x = exFalso (j!=k (equalityCommutative x))
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ with decidableIndex k k
... | inr x = exFalso (x refl)
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl with decidableGroups k ((k + h) (Group.inverse (G k) h)) (Group.0G (G k))
... | inr x = exFalso (x (Group.invRight (G k)))
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl | inl _ with decidableIndex j j
... | inr x = exFalso (x refl)
invRight' {j} (prependLetter _ g nonZero {k} (ofEmpty .k h nonZero1) j!=k) | inr _ | inl refl | inl _ | inl refl with decidableGroups j ((j + g) (Group.inverse (G j) g)) (Group.0G (G j))
... | inr bad = exFalso (bad (Group.invRight (G j)))
... | inl r = record {}
invRight' {j} (prependLetter _ g nonZero {k} (prependLetter .k h nonZero1 {i} x k!=i) j!=k) rewrite refl {x = 0} = Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend j g _ (prepend k h _ (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _))))} {prepend j g nonZero (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))) +RP (nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G j) t))))} {empty} (prependWD' g nonZero (prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G j) t))))) (prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ i nonZero (invZeroImpliesZero (G j) i))) (Equivalence.symmetric (Setoid.eq freeProductSetoid) {(prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _))} {prepend k h _ (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) _)))} t)) (unpeel (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _)))) g nonZero (λ t nonZero (invZeroImpliesZero (G j) t)) (Equivalence.transitive (Setoid.eq freeProductSetoid) {prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t))))} {prepend k h nonZero1 ((plus' x (inv' x)) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))} {empty} (prependWD' h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t)))) (plus' x (inv' x) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t))) (Equivalence.symmetric (Setoid.eq freeProductSetoid) {plus' x (inv' x) +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G k) t))} (plusAssoc (nonempty _ x) (inv' x) (nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G k) t))))))) (unpeel (plus' x (inv' x)) h nonZero1 (λ t nonZero1 (invZeroImpliesZero (G k) t)) (invRight' x))))
where
t : (prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t))))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t)))) =RP (prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t))))))
t = Equivalence.transitive (Setoid.eq freeProductSetoid) {(prepend k h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t))))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t))))} {prepend k h _ (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t)))} {(prepend k h nonZero1 (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) (λ t nonZero1 (invZeroImpliesZero (G _) t)))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) (λ t nonZero (invZeroImpliesZero (G j) t))))))} (prependAssocLemma' {k} {h} nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) _))) (nonempty j (ofEmpty j (Group.inverse (G j) g) _))) (prependWD' h nonZero1 (plus' x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t))) (plus' x ((inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) +RP nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t)))) (plusAssocLemma x (inv' x +RP nonempty k (ofEmpty k (Group.inverse (G k) h) λ t nonZero1 (invZeroImpliesZero (G _) t))) (nonempty j (ofEmpty j (Group.inverse (G j) g) λ t nonZero (invZeroImpliesZero (G _) t)))))
abstract
invRight : (x : ReducedSequence) (x +RP (inv x)) =RP empty
invRight empty = record {}
invRight (nonempty i w) = invRight' {i} w
abstract
invLeft' : {i : I} (x : ReducedSequenceBeginningWith i) (inv (nonempty i x) +RP (nonempty i x)) =RP empty
invLeft' {i} (ofEmpty .i g nonZero) with decidableIndex i i
invLeft' {i} (ofEmpty .i g nonZero) | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i))
... | inl good = record {}
... | inr bad = exFalso (bad (Group.invLeft (G i) {g}))
invLeft' {i} (ofEmpty .i g nonZero) | inr x = exFalso (x refl)
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) with decidableIndex j i
... | inl pr = exFalso (i!=j (equalityCommutative pr))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr with decidableIndex i i
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl with decidableGroups i ((i + Group.inverse (G i) g) g) (Group.0G (G i))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inl k with decidableIndex j j
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl with decidableGroups j ((j + Group.inverse (G j) h) h) (Group.0G (G j))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl | inl good = record {}
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j h nonZero₁) i!=j) | inr pr | inl refl | inl k | inl refl | inr bad = exFalso (bad (Group.invLeft (G j)))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inl k | inr bad = exFalso (bad refl)
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inl refl | inr k = exFalso (k (Group.invLeft (G i) {g}))
invLeft' {i} (prependLetter .i g nonZero {.j} (ofEmpty j g₁ nonZero₁) i!=j) | inr pr | inr bad = exFalso (bad refl)
invLeft' {i} (prependLetter .i g nonZero {.j} (prependLetter j h nonZero1 {k} w x) i!=j) = Equivalence.transitive (Setoid.eq freeProductSetoid) {(((inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP nonempty i (ofEmpty i (Group.inverse (G i) g) _)) +RP nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))} {_} {empty} (plusAssoc (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty i (ofEmpty i (Group.inverse (G i) g) _)) (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))) (Equivalence.transitive (Setoid.eq freeProductSetoid) {((inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP (prepend i (Group.inverse (G i) g) _ (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))))} {(inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP (nonempty j (prependLetter j h nonZero1 w x))} {empty} (plusWD (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (prepend i (Group.inverse (G i) g) _ (nonempty i (prependLetter i g _ (prependLetter j h _ w x) i!=j))) (inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty j (prependLetter j h _ w x)) (Equivalence.reflexive (Setoid.eq freeProductSetoid) {inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)}) (lemma1 {i} {j} {k} i!=j g h w x (λ p nonZero (invZeroImpliesZero (G i) p)) nonZero nonZero1)) (Equivalence.transitive (Setoid.eq freeProductSetoid) {(inv' w +RP nonempty j (ofEmpty j (Group.inverse (G j) h) _)) +RP nonempty j (prependLetter j h _ w x)} {inv' w +RP (nonempty j (ofEmpty j (Group.inverse (G j) h) λ p nonZero1 (invZeroImpliesZero (G j) p)) +RP nonempty j (prependLetter j h nonZero1 w x))} {empty} (plusAssoc (inv' w) (nonempty j (ofEmpty j (Group.inverse (G j) h) _)) (nonempty j (prependLetter j h _ w x))) (Equivalence.transitive (Setoid.eq freeProductSetoid) {inv' w +RP (prepend j (Group.inverse (G j) h) _ (nonempty j (prependLetter j h nonZero1 w x)))} {inv' w +RP (nonempty k w)} {empty} (plusWD (inv' w) (prepend j (Group.inverse (G j) h) _ (nonempty j (prependLetter j h nonZero1 w x))) (inv' w) (nonempty k w) (Equivalence.reflexive (Setoid.eq freeProductSetoid) {inv' w}) (lemma2 {j} {k} x h w (λ p nonZero1 (invZeroImpliesZero (G j) p)) nonZero1)) (invLeft' {k} w))))
abstract
invLeft : (x : ReducedSequence) ((inv x) +RP x) =RP empty
invLeft empty = record {}
invLeft (nonempty i w) = invLeft' {i} w
FreeProductGroup : Group freeProductSetoid _+RP_
Group.+WellDefined FreeProductGroup {m} {n} {x} {y} m=x n=y = plusWD m n x y m=x n=y
Group.0G FreeProductGroup = empty
Group.inverse FreeProductGroup = inv
Group.+Associative FreeProductGroup {a} {b} {c} = Equivalence.symmetric (Setoid.eq freeProductSetoid) {(a +RP b) +RP c} {a +RP (b +RP c)} (plusAssoc a b c)
Group.identRight FreeProductGroup {empty} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {empty}
Group.identRight FreeProductGroup {nonempty i x} rewrite refl {x = 0} = plusEmptyRight x
Group.identLeft FreeProductGroup {empty} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {empty}
Group.identLeft FreeProductGroup {nonempty i x} = Equivalence.reflexive (Setoid.eq freeProductSetoid) {nonempty i x}
Group.invLeft FreeProductGroup {x} = invLeft x
Group.invRight FreeProductGroup {x} = invRight x