Files
agdaproofs/Numbers/BinaryNaturals.agda
2019-08-15 21:51:52 +01:00

520 lines
30 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --warning=error --safe #-}
open import LogicalFormulae
open import Functions
open import Lists.Lists
open import Numbers.Naturals
open import Groups.GroupDefinition
module Numbers.BinaryNaturals where
data Bit : Set where
zero : Bit
one : Bit
BinNat : Set
BinNat = List Bit
::Inj : {xs ys : BinNat} {i : Bit} i :: xs i :: ys xs ys
::Inj refl = refl
nonEmptyNotEmpty : {a : _} {A : Set a} {l1 : List A} {i : A} i :: l1 [] False
nonEmptyNotEmpty {l1 = l1} {i} ()
-- TODO - maybe we should do the floating-point style of assuming there's a leading bit and not storing it.
-- That way, everything is already canonical.
canonical : BinNat BinNat
canonical [] = []
canonical (zero :: n) with canonical n
canonical (zero :: n) | [] = []
canonical (zero :: n) | x :: bl = zero :: x :: bl
canonical (one :: n) = one :: canonical n
Canonicalised : Set
Canonicalised = Sg BinNat (λ i canonical i i)
binNatToN : BinNat
binNatToN [] = 0
binNatToN (zero :: b) = 2 *N binNatToN b
binNatToN (one :: b) = 1 +N (2 *N binNatToN b)
incr : BinNat BinNat
incr [] = one :: []
incr (zero :: n) = one :: n
incr (one :: n) = zero :: (incr n)
incrNonzero : (x : BinNat) canonical (incr x) [] False
incrPreservesCanonical : (x : BinNat) (canonical x x) canonical (incr x) incr x
incrPreservesCanonical [] pr = refl
incrPreservesCanonical (zero :: xs) pr with canonical xs
incrPreservesCanonical (zero :: xs) pr | x :: t = applyEquality (one ::_) (::Inj pr)
incrPreservesCanonical (one :: xs) pr with inspect (canonical (incr xs))
incrPreservesCanonical (one :: xs) pr | [] with x = exFalso (incrNonzero xs x)
incrPreservesCanonical (one :: xs) pr | (x₁ :: y) with x rewrite x = applyEquality (zero ::_) (transitivity (equalityCommutative x) (incrPreservesCanonical xs (::Inj pr)))
incrPreservesCanonical' : (x : BinNat) canonical (incr x) incr (canonical x)
incrC : Canonicalised Canonicalised
incrC (a , b) = incr a , incrPreservesCanonical a b
NToBinNat : BinNat
NToBinNat zero = []
NToBinNat (succ n) with NToBinNat n
NToBinNat (succ n) | t = incr t
NToBinNatC : Canonicalised
NToBinNatC zero = [] , refl
NToBinNatC (succ n) = incrC (NToBinNatC n)
incrInj : {x y : BinNat} incr x incr y canonical x canonical y
incrNonzero' : (x : BinNat) (incr x) [] False
incrNonzero' (zero :: xs) ()
incrNonzero' (one :: xs) ()
canonicalRespectsIncr' : {x y : BinNat} canonical (incr x) canonical (incr y) canonical x canonical y
binNatToNSucc : (n : BinNat) binNatToN (incr n) succ (binNatToN n)
NToBinNatSucc : (n : ) incr (NToBinNat n) NToBinNat (succ n)
binNatToNZero : (x : BinNat) binNatToN x 0 canonical x []
binNatToNZero' : (x : BinNat) canonical x [] binNatToN x 0
canonicalAscends : {i : Bit} (a : BinNat) 0 <N binNatToN a i :: canonical a canonical (i :: a)
canonicalAscends' : {i : Bit} (a : BinNat) (canonical a [] False) i :: canonical a canonical (i :: a)
canonicalAscends' {i} a pr = canonicalAscends {i} a (t a pr)
where
t : (a : BinNat) (canonical a [] False) 0 <N binNatToN a
t a pr with orderIsTotal 0 (binNatToN a)
t a pr | inl (inl x) = x
t a pr | inr x = exFalso (pr (binNatToNZero a (equalityCommutative x)))
canonicalIdempotent : (a : BinNat) canonical a canonical (canonical a)
canonicalIdempotent [] = refl
canonicalIdempotent (zero :: a) with inspect (canonical a)
canonicalIdempotent (zero :: a) | [] with y rewrite y = refl
canonicalIdempotent (zero :: a) | (x :: bl) with y = transitivity (equalityCommutative (canonicalAscends' {zero} a λ p contr p y)) (transitivity (applyEquality (zero ::_) (canonicalIdempotent a)) (equalityCommutative v))
where
contr : {a : _} {A : Set a} {l1 l2 : List A} {x : A} l1 [] l1 x :: l2 False
contr {l1 = []} p1 ()
contr {l1 = x :: l1} () p2
u : canonical (canonical (zero :: a)) canonical (zero :: canonical a)
u = applyEquality canonical (equalityCommutative (canonicalAscends' {zero} a λ p contr p y))
v : canonical (canonical (zero :: a)) zero :: canonical (canonical a)
v = transitivity u (equalityCommutative (canonicalAscends' {zero} (canonical a) λ p contr (transitivity (canonicalIdempotent a) p) y))
canonicalIdempotent (one :: a) rewrite equalityCommutative (canonicalIdempotent a) = refl
canonicalAscends'' : {i : Bit} (a : BinNat) canonical (i :: canonical a) canonical (i :: a)
binNatToNInj : (x y : BinNat) binNatToN x binNatToN y canonical x canonical y
NToBinNatInj : (x y : ) canonical (NToBinNat x) canonical (NToBinNat y) x y
NToBinNatIsCanonical : (x : ) NToBinNat x canonical (NToBinNat x)
NToBinNatIsCanonical zero = refl
NToBinNatIsCanonical (succ x) with NToBinNatC x
NToBinNatIsCanonical (succ x) | a , b = equalityCommutative (incrPreservesCanonical (NToBinNat x) (equalityCommutative (NToBinNatIsCanonical x)))
contr' : {a : _} {A : Set a} {l1 l2 : List A} {x : A} l1 [] l1 x :: l2 False
contr' {l1 = []} p1 ()
contr' {l1 = x :: l1} () p2
binNatToNIsCanonical : (x : BinNat) binNatToN (canonical x) binNatToN x
binNatToNIsCanonical [] = refl
binNatToNIsCanonical (zero :: x) with inspect (canonical x)
binNatToNIsCanonical (zero :: x) | [] with t rewrite t | binNatToNZero' x t = refl
binNatToNIsCanonical (zero :: x) | (x₁ :: bl) with t rewrite (equalityCommutative (canonicalAscends' {zero} x λ p contr' p t)) | binNatToNIsCanonical x = refl
binNatToNIsCanonical (one :: x) rewrite binNatToNIsCanonical x = refl
-- The following two theorems demonstrate that Canonicalised is isomorphic to
nToN : (x : ) binNatToN (NToBinNat x) x
binToBin : (x : BinNat) NToBinNat (binNatToN x) canonical x
binToBin x = transitivity (NToBinNatIsCanonical (binNatToN x)) (binNatToNInj (NToBinNat (binNatToN x)) x (nToN (binNatToN x)))
-- Define the monoid structure, and show that it's the same as 's
_+Binherit_ : BinNat BinNat BinNat
a +Binherit b = NToBinNat (binNatToN a +N binNatToN b)
_+B_ : BinNat BinNat BinNat
[] +B b = b
(x :: a) +B [] = x :: a
(zero :: xs) +B (y :: ys) = y :: (xs +B ys)
(one :: xs) +B (zero :: ys) = one :: (xs +B ys)
(one :: xs) +B (one :: ys) = zero :: incr (xs +B ys)
doubleIsBitShift' : (a : ) NToBinNat (2 *N succ a) zero :: NToBinNat (succ a)
doubleIsBitShift' zero = refl
doubleIsBitShift' (succ a) with doubleIsBitShift' a
... | bl rewrite additionNIsCommutative a (succ (succ (a +N 0))) | additionNIsCommutative (succ (a +N 0)) a | additionNIsCommutative a (succ (a +N 0)) | additionNIsCommutative (a +N 0) a | bl = refl
doubleIsBitShift : (a : ) (0 <N a) NToBinNat (2 *N a) zero :: NToBinNat a
doubleIsBitShift zero ()
doubleIsBitShift (succ a) _ = doubleIsBitShift' a
+BCommutative : (a b : BinNat) a +B b b +B a
+BCommutative [] [] = refl
+BCommutative [] (x :: b) = refl
+BCommutative (x :: a) [] = refl
+BCommutative (zero :: as) (zero :: bs) rewrite +BCommutative as bs = refl
+BCommutative (zero :: as) (one :: bs) rewrite +BCommutative as bs = refl
+BCommutative (one :: as) (zero :: bs) rewrite +BCommutative as bs = refl
+BCommutative (one :: as) (one :: bs) rewrite +BCommutative as bs = refl
+BIsInherited[] : (b : BinNat) (prB : b canonical b) [] +Binherit b [] +B b
+BIsInherited[] [] prB = refl
+BIsInherited[] (zero :: b) prB = t
where
refine : (b : BinNat) zero :: b canonical (zero :: b) b canonical b
refine b pr with canonical b
refine b pr | x :: bl = ::Inj pr
t : NToBinNat (0 +N binNatToN (zero :: b)) zero :: b
t with orderIsTotal 0 (binNatToN b)
t | inl (inl pos) = transitivity (doubleIsBitShift (binNatToN b) pos) (applyEquality (zero ::_) (transitivity (binToBin b) (equalityCommutative (refine b prB))))
t | inl (inr ())
... | inr eq with binNatToNZero b (equalityCommutative eq)
... | u with canonical b
t | inr eq | u | [] = exFalso (bad b prB)
where
bad : (c : BinNat) zero :: c [] False
bad c ()
t | inr eq | () | x :: bl
+BIsInherited[] (one :: b) prB = ans
where
ans : NToBinNat (binNatToN (one :: b)) one :: b
ans = transitivity (binToBin (one :: b)) (equalityCommutative prB)
canonicalDescends : {a : Bit} (as : BinNat) (prA : a :: as canonical (a :: as)) as canonical as
canonicalDescends {zero} as pr with canonical as
canonicalDescends {zero} as pr | x :: bl = ::Inj pr
canonicalDescends {one} as pr = ::Inj pr
-- Show that the monoid structure of is the same as that of BinNat
+BIsInherited : (a b : BinNat) (prA : a canonical a) (prB : b canonical b) a +Binherit b a +B b
+BinheritLemma : (a : BinNat) (b : BinNat) (prA : a canonical a) (prB : b canonical b) incr (NToBinNat ((binNatToN a +N binNatToN b) +N ((binNatToN a +N binNatToN b) +N zero))) one :: (a +B b)
+BIsInherited' : (a b : BinNat) a +Binherit b canonical (a +B b)
+BinheritLemma a b prA prB with orderIsTotal 0 (binNatToN a +N binNatToN b)
+BinheritLemma a b prA prB | inl (inl x) rewrite doubleIsBitShift (binNatToN a +N binNatToN b) x = applyEquality (one ::_) (+BIsInherited a b prA prB)
+BinheritLemma a b prA prB | inr x with sumZeroImpliesOperandsZero (binNatToN a) (equalityCommutative x)
+BinheritLemma a b prA prB | inr x | fst ,, snd = ans2
where
bad : b []
bad = transitivity prB (binNatToNZero b snd)
bad2 : a []
bad2 = transitivity prA (binNatToNZero a fst)
ans2 : incr (NToBinNat ((binNatToN a +N binNatToN b) +N ((binNatToN a +N binNatToN b) +N zero))) one :: (a +B b)
ans2 rewrite bad | bad2 = refl
+BIsInherited [] b _ prB = +BIsInherited[] b prB
+BIsInherited (x :: a) [] prA _ rewrite +BCommutative (x :: a) [] | additionNIsCommutative (binNatToN (x :: a)) (binNatToN []) = +BIsInherited[] (x :: a) prA
+BIsInherited (zero :: as) (zero :: b) prA prB with orderIsTotal 0 (binNatToN as +N binNatToN b)
... | inl (inl 0<) rewrite additionNIsCommutative (binNatToN as) 0 | additionNIsCommutative (binNatToN b) 0 | equalityCommutative (additionNIsAssociative (binNatToN as +N binNatToN as) (binNatToN b) (binNatToN b)) | additionNIsAssociative (binNatToN as) (binNatToN as) (binNatToN b) | additionNIsCommutative (binNatToN as) (binNatToN b) | equalityCommutative (additionNIsAssociative (binNatToN as) (binNatToN b) (binNatToN as)) | additionNIsAssociative (binNatToN as +N binNatToN b) (binNatToN as) (binNatToN b) | additionNIsCommutative 0 ((binNatToN as +N binNatToN b) +N (binNatToN as +N binNatToN b)) | additionNIsAssociative (binNatToN as +N binNatToN b) (binNatToN as +N binNatToN b) 0 = transitivity (doubleIsBitShift (binNatToN as +N binNatToN b) (identityOfIndiscernablesRight _ _ _ _<N_ 0< (additionNIsCommutative (binNatToN b) _))) (applyEquality (zero ::_) (+BIsInherited as b (canonicalDescends as prA) (canonicalDescends b prB)))
+BIsInherited (zero :: as) (zero :: b) prA prB | inl (inr ())
... | inr p with sumZeroImpliesOperandsZero (binNatToN as) (equalityCommutative p)
+BIsInherited (zero :: as) (zero :: b) prA prB | inr p | as=0 ,, b=0 rewrite as=0 | b=0 = exFalso ans
where
bad : (b : BinNat) (pr : b canonical b) (pr2 : binNatToN b 0) b []
bad b pr pr2 = transitivity pr (binNatToNZero b pr2)
t : b canonical b
t with canonical b
t | x :: bl = ::Inj prB
u : b []
u = bad b t b=0
nono : {A : Set} {a : A} {as : List A} a :: as [] False
nono ()
ans : False
ans with inspect (canonical b)
ans | [] with x rewrite x = nono prB
ans | (x₁ :: y) with x = nono (transitivity (equalityCommutative x) (transitivity (equalityCommutative t) u))
+BIsInherited (zero :: as) (one :: b) prA prB rewrite additionNIsCommutative (binNatToN as +N (binNatToN as +N zero)) (succ (binNatToN b +N (binNatToN b +N zero))) | additionNIsCommutative (binNatToN b +N (binNatToN b +N zero)) (binNatToN as +N (binNatToN as +N zero)) | equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN b)) = +BinheritLemma as b (canonicalDescends as prA) (canonicalDescends b prB)
+BIsInherited (one :: as) (zero :: bs) prA prB rewrite equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN bs)) = +BinheritLemma as bs (canonicalDescends as prA) (canonicalDescends bs prB)
+BIsInherited (one :: as) (one :: bs) prA prB rewrite additionNIsCommutative (binNatToN as +N (binNatToN as +N zero)) (succ (binNatToN bs +N (binNatToN bs +N zero))) | additionNIsCommutative (binNatToN bs +N (binNatToN bs +N zero)) (2 *N binNatToN as) | equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN bs)) | +BinheritLemma as bs (canonicalDescends as prA) (canonicalDescends bs prB) = refl
--- Proofs
parity : (a b : ) succ (2 *N a) 2 *N b False
doubleInj : (a b : ) (2 *N a) (2 *N b) a b
incrNonzeroTwice : (x : BinNat) canonical (incr (incr x)) one :: [] False
incrNonzeroTwice (zero :: xs) pr with canonical (incr xs)
incrNonzeroTwice (zero :: xs) () | []
incrNonzeroTwice (zero :: xs) () | x :: bl
incrNonzeroTwice (one :: xs) pr = exFalso (incrNonzero xs (::Inj pr))
canonicalRespectsIncr' {[]} {[]} pr = refl
canonicalRespectsIncr' {[]} {zero :: y} pr with canonical y
canonicalRespectsIncr' {[]} {zero :: y} pr | [] = refl
canonicalRespectsIncr' {[]} {one :: y} pr with canonical (incr y)
canonicalRespectsIncr' {[]} {one :: y} () | []
canonicalRespectsIncr' {[]} {one :: y} () | x :: bl
canonicalRespectsIncr' {zero :: xs} {y} pr with canonical xs
canonicalRespectsIncr' {zero :: xs} {[]} pr | [] = refl
canonicalRespectsIncr' {zero :: xs} {zero :: y} pr | [] with canonical y
canonicalRespectsIncr' {zero :: xs} {zero :: y} pr | [] | [] = refl
canonicalRespectsIncr' {zero :: xs} {one :: y} pr | [] with canonical (incr y)
canonicalRespectsIncr' {zero :: xs} {one :: y} () | [] | []
canonicalRespectsIncr' {zero :: xs} {one :: y} () | [] | x :: bl
canonicalRespectsIncr' {zero :: xs} {zero :: ys} pr | x :: bl with canonical ys
canonicalRespectsIncr' {zero :: xs} {zero :: ys} pr | x :: bl | x₁ :: th = applyEquality (zero ::_) (::Inj pr)
canonicalRespectsIncr' {zero :: xs} {one :: ys} pr | x :: bl with canonical (incr ys)
canonicalRespectsIncr' {zero :: xs} {one :: ys} () | x :: bl | []
canonicalRespectsIncr' {zero :: xs} {one :: ys} () | x :: bl | x₁ :: th
canonicalRespectsIncr' {one :: xs} {[]} pr with canonical (incr xs)
canonicalRespectsIncr' {one :: xs} {[]} () | []
canonicalRespectsIncr' {one :: xs} {[]} () | x :: bl
canonicalRespectsIncr' {one :: xs} {zero :: ys} pr with canonical ys
canonicalRespectsIncr' {one :: xs} {zero :: ys} pr | [] with canonical (incr xs)
canonicalRespectsIncr' {one :: xs} {zero :: ys} () | [] | []
canonicalRespectsIncr' {one :: xs} {zero :: ys} () | [] | x :: t
canonicalRespectsIncr' {one :: xs} {zero :: ys} pr | x :: bl with canonical (incr xs)
canonicalRespectsIncr' {one :: xs} {zero :: ys} () | x :: bl | []
canonicalRespectsIncr' {one :: xs} {zero :: ys} () | x :: bl | x₁ :: t
canonicalRespectsIncr' {one :: xs} {one :: ys} pr with inspect (canonical (incr xs))
canonicalRespectsIncr' {one :: xs} {one :: ys} pr | [] with x = exFalso (incrNonzero xs x)
canonicalRespectsIncr' {one :: xs} {one :: ys} pr | (x+1 :: x+1s) with bad rewrite bad = applyEquality (one ::_) ans
where
ans : canonical xs canonical ys
ans with inspect (canonical (incr ys))
ans | [] with x = exFalso (incrNonzero ys x)
ans | (x₁ :: y) with x rewrite x = canonicalRespectsIncr' {xs} {ys} (transitivity bad (transitivity (::Inj pr) (equalityCommutative x)))
binNatToNInj[] : (y : BinNat) 0 binNatToN y [] canonical y
binNatToNInj[] [] pr = refl
binNatToNInj[] (zero :: y) pr with productZeroImpliesOperandZero {2} {binNatToN y} (equalityCommutative pr)
binNatToNInj[] (zero :: y) pr | inr x with inspect (canonical y)
binNatToNInj[] (zero :: y) pr | inr x | [] with canYPr rewrite canYPr = refl
binNatToNInj[] (zero :: ys) pr | inr x | (y :: canY) with canYPr with binNatToNZero ys x
... | r with canonical ys
binNatToNInj[] (zero :: ys) pr | inr x | (y :: canY) with canYPr | r | [] = refl
binNatToNInj[] (zero :: ys) pr | inr x | (y :: canY) with canYPr | () | x₁ :: t
binNatToNInj [] y pr = binNatToNInj[] y pr
binNatToNInj (zero :: xs) [] pr = equalityCommutative (binNatToNInj[] (zero :: xs) (equalityCommutative pr))
binNatToNInj (zero :: xs) (zero :: ys) pr with doubleInj (binNatToN xs) (binNatToN ys) pr
... | x=y with binNatToNInj xs ys x=y
... | t with canonical xs
binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | [] with canonical ys
binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | [] | [] = refl
binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | x :: cxs with canonical ys
binNatToNInj (zero :: xs) (zero :: ys) pr | x=y | t | x :: cxs | x₁ :: cys = applyEquality (zero ::_) t
binNatToNInj (zero :: xs) (one :: ys) pr = exFalso (parity (binNatToN ys) (binNatToN xs) (equalityCommutative pr))
binNatToNInj (one :: xs) (zero :: ys) pr = exFalso (parity (binNatToN xs) (binNatToN ys) pr)
binNatToNInj (one :: xs) (one :: ys) pr = applyEquality (one ::_) (binNatToNInj xs ys (doubleInj (binNatToN xs) (binNatToN ys) (succInjective pr)))
NToBinNatInj zero zero pr = refl
NToBinNatInj zero (succ y) pr with NToBinNat y
NToBinNatInj zero (succ y) pr | bl = exFalso (incrNonzero bl (equalityCommutative pr))
NToBinNatInj (succ x) zero pr with NToBinNat x
... | bl = exFalso (incrNonzero bl pr)
NToBinNatInj (succ x) (succ y) pr with inspect (NToBinNat x)
NToBinNatInj (succ zero) (succ zero) pr | [] with nToBinXPr = refl
NToBinNatInj (succ zero) (succ (succ y)) pr | [] with nToBinXPr with NToBinNat y
NToBinNatInj (succ zero) (succ (succ y)) pr | [] with nToBinXPr | y' = exFalso (incrNonzeroTwice y' (equalityCommutative pr))
NToBinNatInj (succ (succ x)) (succ y) pr | [] with nToBinXPr with NToBinNat x
NToBinNatInj (succ (succ x)) (succ y) pr | [] with nToBinXPr | t = exFalso (incrNonzero' t nToBinXPr)
NToBinNatInj (succ x) (succ y) pr | (x₁ :: nToBinX) with nToBinXPr with NToBinNatInj x y (canonicalRespectsIncr' {NToBinNat x} {NToBinNat y} pr)
NToBinNatInj (succ x) (succ .x) pr | (x₁ :: nToBinX) with nToBinXPr | refl = refl
incrInj {[]} {[]} pr = refl
incrInj {[]} {zero :: ys} pr rewrite equalityCommutative (::Inj pr) = refl
incrInj {zero :: xs} {[]} pr rewrite ::Inj pr = refl
incrInj {zero :: xs} {zero :: .xs} refl = refl
incrInj {one :: xs} {one :: ys} pr = applyEquality (one ::_) (incrInj {xs} {ys} (l (incr xs) (incr ys) pr))
where
l : (a : BinNat) (b : BinNat) zero :: a zero :: b a b
l a .a refl = refl
doubleInj zero zero pr = refl
doubleInj (succ a) (succ b) pr = applyEquality succ (doubleInj a b u)
where
t : a +N a b +N b
t rewrite additionNIsCommutative (succ a) 0 | additionNIsCommutative (succ b) 0 | additionNIsCommutative a (succ a) | additionNIsCommutative b (succ b) = succInjective (succInjective pr)
u : a +N (a +N zero) b +N (b +N zero)
u rewrite additionNIsCommutative a 0 | additionNIsCommutative b 0 = t
binNatToNZero [] pr = refl
binNatToNZero (zero :: xs) pr with inspect (canonical xs)
binNatToNZero (zero :: xs) pr | [] with x rewrite x = refl
binNatToNZero (zero :: xs) pr | (x₁ :: y) with x with productZeroImpliesOperandZero {2} {binNatToN xs} pr
binNatToNZero (zero :: xs) pr | (x₁ :: y) with x | inr pr' with binNatToNZero xs pr'
... | bl with canonical xs
binNatToNZero (zero :: xs) pr | (x₁ :: y) with x | inr pr' | bl | [] = refl
binNatToNZero (zero :: xs) pr | (x₁ :: y) with x | inr pr' | () | x₂ :: t
binNatToNSucc [] = refl
binNatToNSucc (zero :: n) = refl
binNatToNSucc (one :: n) rewrite additionNIsCommutative (binNatToN n) zero | additionNIsCommutative (binNatToN (incr n)) 0 | binNatToNSucc n = applyEquality succ (additionNIsCommutative (binNatToN n) (succ (binNatToN n)))
incrNonzero (one :: xs) pr with inspect (canonical (incr xs))
incrNonzero (one :: xs) pr | [] with x = incrNonzero xs x
incrNonzero (one :: xs) pr | (y :: ys) with x with canonical (incr xs)
incrNonzero (one :: xs) pr | (y :: ys) with () | []
incrNonzero (one :: xs) () | (.x₁ :: .th) with refl | x₁ :: th
nToN zero = refl
nToN (succ x) with inspect (NToBinNat x)
nToN (succ x) | [] with pr = ans
where
t : x zero
t = NToBinNatInj x 0 (applyEquality canonical pr)
ans : binNatToN (incr (NToBinNat x)) succ x
ans rewrite t | pr = refl
nToN (succ x) | (bit :: xs) with pr = transitivity (binNatToNSucc (NToBinNat x)) (applyEquality succ (nToN x))
parity zero (succ b) pr rewrite additionNIsCommutative b (succ (b +N 0)) = bad pr
where
bad : (1 succ (succ ((b +N 0) +N b))) False
bad ()
parity (succ a) (succ b) pr rewrite additionNIsCommutative b (succ (b +N 0)) | additionNIsCommutative a (succ (a +N 0)) | additionNIsCommutative (a +N 0) a | additionNIsCommutative (b +N 0) b = parity a b (succInjective (succInjective pr))
binNatToNZero' [] pr = refl
binNatToNZero' (zero :: xs) pr with inspect (canonical xs)
binNatToNZero' (zero :: xs) pr | [] with p2 = ans
where
t : binNatToN xs 0
t = binNatToNZero' xs p2
ans : 2 *N binNatToN xs 0
ans rewrite t = refl
binNatToNZero' (zero :: xs) pr | (y :: ys) with p rewrite p = exFalso (bad pr)
where
bad : zero :: y :: ys [] False
bad ()
binNatToNZero' (one :: xs) ()
canonicalAscends {zero} a 0<a with inspect (canonical a)
canonicalAscends {zero} (zero :: a) 0<a | [] with x = exFalso (contr'' (binNatToN a) t v)
where
u : binNatToN (zero :: a) 0
u = binNatToNZero' (zero :: a) x
v : binNatToN a 0
v with inspect (binNatToN a)
v | zero with x = x
v | succ a' with x with inspect (binNatToN (zero :: a))
v | succ a' with x | zero with pr2 rewrite pr2 = exFalso (lessIrreflexive 0<a)
v | succ a' with x | succ y with pr2 rewrite u = exFalso (lessIrreflexive 0<a)
t : 0 <N binNatToN a
t with binNatToN a
t | succ bl rewrite additionNIsCommutative (succ bl) 0 = succIsPositive bl
contr'' : (x : ) (0 <N x) (x 0) False
contr'' x 0<x x=0 rewrite x=0 = lessIrreflexive 0<x
canonicalAscends {zero} a 0<a | (x₁ :: y) with x rewrite x = refl
canonicalAscends {one} a 0<a = refl
canonicalAscends'' {i} a with inspect (canonical a)
canonicalAscends'' {zero} a | [] with x rewrite x = refl
canonicalAscends'' {one} a | [] with x rewrite x = refl
canonicalAscends'' {i} a | (x₁ :: y) with x = transitivity (applyEquality canonical (canonicalAscends' {i} a λ p contr p x)) (equalityCommutative (canonicalIdempotent (i :: a)))
where
contr : {a : _} {A : Set a} {l1 l2 : List A} {x : A} l1 [] l1 x :: l2 False
contr {l1 = []} p1 ()
contr {l1 = x :: l1} () p2
incrPreservesCanonical' [] = refl
incrPreservesCanonical' (zero :: xs) with inspect (canonical xs)
incrPreservesCanonical' (zero :: xs) | [] with x rewrite x = refl
incrPreservesCanonical' (zero :: xs) | (x₁ :: y) with x rewrite x = refl
incrPreservesCanonical' (one :: xs) with inspect (canonical (incr xs))
... | [] with pr = exFalso (incrNonzero xs pr)
... | (_ :: _) with pr rewrite pr = applyEquality (zero ::_) (transitivity (equalityCommutative pr) (incrPreservesCanonical' xs))
+BIsInherited'[] : (b : BinNat) [] +Binherit b canonical ([] +B b)
+BIsInherited'[] [] = refl
+BIsInherited'[] (zero :: b) with inspect (canonical b)
+BIsInherited'[] (zero :: b) | [] with pr rewrite binNatToNZero' b pr | pr = refl
+BIsInherited'[] (zero :: b) | (x :: bl) with pr rewrite pr = ans
where
contr : {a : _} {A : Set a} {l1 l2 : List A} {x : A} l1 [] l1 x :: l2 False
contr {l1 = []} p1 ()
contr {l1 = x :: l1} () p2
ans : NToBinNat (binNatToN b +N (binNatToN b +N zero)) zero :: x :: bl
ans with inspect (binNatToN b)
ans | zero with th rewrite th = exFalso (contr (binNatToNZero b th) pr)
ans | succ th with blah rewrite blah | doubleIsBitShift' th = applyEquality (zero ::_) (transitivity (equalityCommutative u) pr)
where
u : canonical b incr (NToBinNat th)
u = transitivity (equalityCommutative (binToBin b)) (applyEquality NToBinNat blah)
+BIsInherited'[] (one :: b) with inspect (binNatToN b)
... | zero with pr rewrite pr = applyEquality (one ::_) (equalityCommutative (binNatToNZero b pr))
... | (succ bl) with pr = ans
where
u : NToBinNat (2 *N binNatToN b) zero :: canonical b
u with doubleIsBitShift' bl
... | t = transitivity (identityOfIndiscernablesLeft _ _ _ _≡_ t (applyEquality (λ i NToBinNat (2 *N i)) (equalityCommutative pr))) (applyEquality (zero ::_) (transitivity (applyEquality NToBinNat (equalityCommutative pr)) (binToBin b)))
ans : incr (NToBinNat (binNatToN b +N (binNatToN b +N zero))) one :: canonical b
ans = applyEquality incr u
+BIsInherited' [] b = +BIsInherited'[] b
+BIsInherited' (x :: a) [] rewrite +BCommutative (x :: a) [] | additionNIsCommutative (binNatToN (x :: a)) 0 = binToBin (x :: a)
+BIsInherited' (zero :: as) (zero :: bs) rewrite equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN bs)) = ans
where
ans : NToBinNat (2 *N (binNatToN as +N binNatToN bs)) canonical (zero :: (as +B bs))
ans with inspect (binNatToN as +N binNatToN bs)
ans | zero with x with sumZeroImpliesOperandsZero (binNatToN as) x
... | as=0 ,, bs=0 rewrite as=0 | bs=0 = foo
where
u : canonical (as +Binherit bs) []
u rewrite as=0 | bs=0 = refl
foo : [] canonical (zero :: (as +B bs))
foo = transitivity (transitivity b (applyEquality (λ i canonical (zero :: i)) (+BIsInherited' as bs))) (canonicalAscends'' {zero} (as +B bs))
where
b : [] canonical (zero :: (as +Binherit bs))
b rewrite u = refl
ans | succ y with x rewrite x | doubleIsBitShift' y = transitivity (applyEquality (λ i zero :: NToBinNat i) (equalityCommutative x)) ans2
where
u : 0 <N binNatToN (as +B bs)
u rewrite equalityCommutative (binNatToNIsCanonical (as +B bs)) | equalityCommutative (+BIsInherited' as bs) | x | nToN (succ y) = succIsPositive y
ans2 : zero :: NToBinNat (binNatToN as +N binNatToN bs) canonical (zero :: (as +B bs))
ans2 rewrite +BIsInherited' as bs = canonicalAscends (as +B bs) u
+BIsInherited' (zero :: as) (one :: bs) rewrite additionNIsCommutative (2 *N binNatToN as) (succ (2 *N binNatToN bs)) | additionNIsCommutative (2 *N binNatToN bs) (2 *N binNatToN as) | equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN bs)) = ans2
where
ans2 : incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs))) one :: canonical (as +B bs)
ans2 with inspect (binNatToN as +N binNatToN bs)
ans2 | zero with x with sumZeroImpliesOperandsZero (binNatToN as) x
ans2 | zero with x | as=0 ,, bs=0 rewrite as=0 | bs=0 = applyEquality (one ::_) (transitivity t (+BIsInherited' as bs))
where
t : [] as +Binherit bs
t rewrite as=0 | bs=0 = refl
ans2 | succ y with x rewrite x | doubleIsBitShift' y = applyEquality (one ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (+BIsInherited' as bs))
+BIsInherited' (one :: as) (zero :: bs) rewrite equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN bs)) = ans
where
ans : incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs))) one :: canonical (as +B bs)
ans with inspect (binNatToN as +N binNatToN bs)
ans | zero with x with sumZeroImpliesOperandsZero (binNatToN as) x
... | as=0 ,, bs=0 rewrite as=0 | bs=0 = applyEquality (one ::_) (transitivity t (+BIsInherited' as bs))
where
t : [] NToBinNat (binNatToN as +N binNatToN bs)
t rewrite as=0 | bs=0 = refl
ans | succ y with x rewrite x | doubleIsBitShift' y = applyEquality (one ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (+BIsInherited' as bs))
+BIsInherited' (one :: as) (one :: bs) rewrite additionNIsCommutative (2 *N binNatToN as) (succ (2 *N binNatToN bs)) | additionNIsCommutative (2 *N binNatToN bs) (2 *N binNatToN as) | equalityCommutative (productDistributes 2 (binNatToN as) (binNatToN bs)) = ans
where
ans : incr (incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs)))) canonical (zero :: incr (as +B bs))
ans with inspect (binNatToN as +N binNatToN bs)
... | zero with x with sumZeroImpliesOperandsZero (binNatToN as) x
ans | zero with x | as=0 ,, bs=0 rewrite as=0 | bs=0 = bar
where
u' : canonical (as +Binherit bs) []
u' rewrite as=0 | bs=0 = refl
u : canonical (as +B bs) []
u rewrite equalityCommutative (+BIsInherited' as bs) = transitivity (NToBinNatIsCanonical (binNatToN as +N binNatToN bs)) u'
t : canonical (incr (as +B bs)) one :: []
t rewrite incrPreservesCanonical' (as +B bs) | u = refl
bar : zero :: one :: [] canonical (zero :: incr (as +B bs))
bar rewrite t = refl
ans | succ y with x rewrite x | doubleIsBitShift' y = transitivity (applyEquality (λ i zero :: incr (NToBinNat i)) (equalityCommutative x)) ans2
where
ans2 : zero :: incr (as +Binherit bs) canonical (zero :: incr (as +B bs))
ans2 rewrite +BIsInherited' as bs | equalityCommutative (incrPreservesCanonical' (as +B bs)) | canonicalAscends' {zero} (incr (as +B bs)) (incrNonzero (as +B bs)) = refl
NToBinNatSucc zero = refl
NToBinNatSucc (succ n) with NToBinNat n
... | [] = refl
... | a :: as = refl